当前位置:文档之家› 电磁感应中的“双杆问题”

电磁感应中的“双杆问题”

电磁感应中的“双杆问题”(10-12-29)命题人:杨立山 审题人:刘海宝学生姓名: 学号: 习题评价 (难、较难、适中、简单) 教学目标:综合应用电磁感应等电学知识解决力、电综合问题; 学习重点:力、电综合的“双杆问题”问题解法学习难点:电磁感应等电学知识和力学知识的综合应用,主要有1.利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题 2.应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。

重点知识及方法点拨:1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

2.“双杆”中两杆都做同方向上的加速运动。

“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。

3.“双杆”在不等宽导轨上同向运动。

“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。

4感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI 。

在时间△t 内安培力的冲量RBL BLq t BLI t F ∆Φ==∆=∆,式中q 是通过导体截面的电量。

利用该公式解答问题十分简便。

电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

练习题1.如图所示,光滑平行导轨仅其水平部分处于竖直向上的匀强磁场中,金属杆b 静止在导轨的水平部分上,金属杆a 沿导轨的弧形部分从离地h 处由静止开始下滑,运动中两杆始终与轨道垂直并接触良好且它们之间未发生碰撞,已知a 杆的质量m a =m 0,b 杆的质量m b =34m 0,且水平导轨足够长,求:(1)a 和b 的最终速度分别是多大?(2)整个过程中回路释放的电能是多少?(3)若已知a 、b 杆的电阻之比R a :R b =3:4,其余电阻不计,则整个过程中a 、b 上产生的热量分别是多少?2.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。

导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?3.如图所示,光滑导轨EF 、GH 等高平行放置,EG 间宽度为FH 间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。

ab 、cd 是质量均为m 的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。

试求:(1)ab、cd棒的最终速度,(2)全过程中感应电流产生的焦耳热。

4.图中a1b1c1d1和a2b2c2d2为在同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直于导轨所在平面(纸面)向里。

导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。

x1 y1与x2 y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为和m1和m2,它们都垂直于导轨并与导轨保持光滑接触。

两杆与导轨构成的回路的总电阻为R。

F为作用于金属杆x1y1上的竖直向上的恒力。

已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

5.两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=Ω,回路中其余部分的电阻可不计.已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示.不计导轨上的摩擦.(1)求作用于每条金属细杆的拉力的大小.量.6.如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

导轨间的距离l=0.20m 。

两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =Ω。

在t =0时刻,两杆都处于静止状态。

现有一与导轨平行、大小为的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动。

经过t =,金属杆甲的加速度为a =1.37m/s 2,问此时两金属杆的速度各为多少?【例7】如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L 的区域内,有一个边长为a (a <L )的正方形闭合线圈以初速v 0垂直磁场边界滑过磁场后速度变为v (v <v 0)那么 A .完全进入磁场中时线圈的速度大于(v 0+v )/2; B .安全进入磁场中时线圈的速度等于(v 0+v )/2; C .完全进入磁场中时线圈的速度小于(v 0+v )/2; D .以上情况A 、B 均有可能,而C 是不可能的电磁感应中的“双杆问题”(10-12-29)参考答案1.(1)a 棒由斜面下落过程中m a gh=21m a v 12在水平面a 、b 最后匀速m a v 1=(m a +m b )v 2 解得v 2=gh 273(2)全程由能量守恒得 E=m a gh -21(m a +m b )v 22=74m 0gh (3)R a 、R b 串联 由Q=I 2Rt 得Q a =491273 E m 0gh Q b =74E=4916m 0gh2.解析:ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用作减速运动,cd 棒则在安培力作用下作加速运动.在La aFab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 作匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20=根据能量守恒,整个过程中产生的总热量222041)2(2121mv v m mv Q =-=(2)设ab 棒的速度变为初速度的3/4时,cd 棒的速度为v 1,则由动量守恒可知:10043mv v m mv +=此时回路中的感应电动势和感应电流分别为:BL v v E )43(10-=,RE I 2= 此时cd 棒所受的安培力: IBLF =,所以cd 棒的加速度为 mF a =由以上各式,可得mRv L B a 4022= 。

3.解:ab 自由下滑,机械能守恒:mgh=(1/2)mV 2[1]由于ab 、cd 串联在同一电路中,任何时刻通过的电流总相等,金属棒有效长度 L ab =3L cd ,故它们的磁场力为: F ab =3F cd [2]在磁场力作用下,ab 、cd 各作变速运动,产生的感应电动势方向相反,当εab =εcd 时,电路中感应电流为零,(I=0),安培力为零,ab 、cd 运动趋于稳定, 此时有: BL ab V ab =BL cd V cd 所以V ab =V cd /3 [3] ab 、cd 受磁场力作用,动量均发生变化,由动量定理得: F ab △t=m(V -V ab ) [4]F cd △t=mV cd [5]联立以上各式解得:V ab =(1/10),V cd =(3/10)(2)根据系统能量守恒可得:Q=△E 机=mgh-(1/2)m(V ab 2+V cd 2)=(9/10)mgh4.解析:设杆向上的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。

由法拉第电磁感应定律,回路中的感应电动势的大小v l l B E )(12-= ①回路中的电流 REI =② 电流沿顺时针方向。

两金属杆都要受到安培力作用,作用于杆x 1y 1的安培力为I Bl f 11= ③方向向上,作用于杆x 2y 2的安培力为 I Bl f 22= ④方向向下,当杆作匀速运动时,根据牛顿第二定律有02121=-+--f f g m g m F ⑤解以上各式得 )()(1221l l B gm m F I -+-=⑥R l l B gm m F v 212221)()(-+-=⑦ 作用于两杆的重力的功率的大小 gv m m P )(21+= ⑧ 电阻上的热功率 R I Q 2= ⑨ 由⑥⑦⑧⑨式,可得g m m R l l B gm m F P )()()(21212221+-+-=⑩R l l B g m m F Q 21221])()([-+-= ⑾5.解析:(1)当两金属杆都以速度v 匀速滑动时,每条金属杆中产生的感应电动势分别为: E 1=E 2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:rE E I 221+=因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F 1=F 2=IBd 。

由以上各式并代入数据得22221102.3-⨯===rvd B F F N (2)设两金属杆之间增加的距离为△L ,则两金属杆共产生的热量为vL r I Q 222∆⋅⋅=,代入数据得 Q =×10-2J.6.解析:设任一时刻t 两金属杆甲、乙之间的距离为x ,速度分别为v 1和v 2,经过很短的时间△t ,杆甲移动距离v 1△t ,杆乙移动距离v 2△t ,回路面积改变t l v v lx t t v t v x S ∆-=-+∆+∆-=∆)(])[(2112由法拉第电磁感应定律,回路中的感应电动势tS B E ∆∆= 回路中的电流 RE i 2=杆甲的运动方程ma Bli F =-由于作用于杆甲和杆乙的安培力总是大小相等,方向相反,所以两杆的动量0(=t 时为0)等于外力F 的冲量21mv mv Ft +=联立以上各式解得)](2[21211ma F F B Rm F v -+= )](2[212212ma F IB R m F v --= 代入数据得s m v sm v /85.1/15.821==点评:题中感应电动势的计算也可以直接利用导体切割磁感线时产生的感应电动势公式和右手定则求解:设甲、乙速度分别为v 1和v 2,两杆切割磁感线产生的感应电动势分别为E 1=Blv 1 ,E 2=Blv 2由右手定则知两电动势方向相反,故总电动势为E =E 2―E 1=Bl (v 2-v 1)。

相关主题