低合金化高强度灰铸铁
A:热点隔测1520℃出铁水
B:1480℃浇铸
(6)原料
A:采用优质的新生铁,干净的废钢
B:保证硅铁、锰铁、增碳剂的有效含量,以保证其吸收率
(7)变质剂、孕育剂、合金的加入量(以出1.2吨铁水为例)
A:按熔炼工艺要求,变质剂(氮化铬)按0.3%称量加入
C:孕育剂(锶硅)按0.5%称量加入
五、具体实施
为了得到高强度的灰铸铁,保证其铸件的抗拉强度在300N/mm2以上,单从提高强度方面来讲,其方法有二种。方法一:改变炉料的组成,增大废钢的加入量,从而降低碳当量并进行包内孕育处理。方法二:加入少量合金元素与孕育相结合的措施。方法一由于降低了碳、硅含量,其碳当量较低,减少了石墨数量,细化了石墨,增加了初析奥氏体枝晶量,从而提高了铸铁的强度,但同时碳当量的降低会导致铸件性能的降低,铸件断面敏感性增大,铸件内应力增加,硬度上升,加工困难等问题。方法二利用在炉前加入少量合金元素,可适当促进和强烈稳定铸件内部珠光体的形成,并部分细化珠光体,强化铁素体,形成适量的碳化物,同时应使原铁液保持较高的碳当量,使其白口倾向减少,铸造性能好,不易产生缩孔、缩松现象。经过比较,再根据我厂铸件结构的特点(结构复杂、薄壁铸件高强度),于是我们决定采用第二种方法,经过多次分析和比较决定选用铜、铬两钟合金同时使用及孕育处理相结合的方法来进行低合金化高强度灰铸铁的试生产。
0.65
∫
0.75
3.10
∫
3.25
2.10
∫
2.30
0.85
∫
0.95
<0.1
<0.1
300
∫
380
180
∫
220
(二)、在实际测试中,出铁水温度控制在1500℃——1520℃之间,浇铸温度控制在1470℃——1490℃之间,铁水的含碳量控制在c=3.15(%)——3.25(%);硅控制在Si=2.10(%)——-2.30(%)时;将合金:(铜)按1.2%比例加入,氮化铬与孕育剂(锶硅)按0.6%:1.0%加入时,发现抗拉强度可以达到360N/mm2敲三角试片,白口宽度在6——-9毫米之间,同时铁水流动性差,敲开铸件,从它的断面上可以看到,虽然断面晶粒较细,但铸件断面的颜色呈银灰色,铸件的薄壁处有“白口”现象出现,而且敲打铸件,发现铸件有脆化的趋势,机加工时,发现铸件内部有缩松现象发生,同时硬度达到HB240左右,给机加工带来困难。
为了确保我厂低合金化高强度灰铸铁的试制成功,找出了一些在实际生产中影响低合金化高强度灰铸铁试制的一些主要问题,进行因果分析(见图一)。例如:原材料、操作、方法等,并对这些主要问题实行整改措施,具体落实到工作人员、检查人员,从而使得这些问题在现场生产过程中事先就得到了控制, 以保证新产品试制成功。
图一 影响抗拉强度因果分析图
硅碳
比
Si/C
化学成分(%)
力学性能
C
Si
Mn
P
S
N/mm2
HB
HT300
(设计)
试棒顶端下凹<11毫米试棒断面晶粒要细三角试片白口宽度<4毫米
3.90
0.70
3.15
2.2
0.9
<0.2
<0.1
300
200
HT300
(实测)
试棒顶端下凹4-9毫米断晶粒细结,三角试片白口宽度1-4毫米
3.85
∫
4.0
经过多次反复调整,最终确定了合金:(铜)按0.9%加入;氮化铬与孕育剂(锶硅)按0.3%:0.6%加入,铁水的含碳量控制在C=3.30(%)——3.35(%)之间,含硅量控制在Si=1.70(%)——-1.90(%)之间,此时铸件的抗拉强度仍可达到320N/mm2以上,同时铁水的流动性好,铸件的各项性能指标都表现良好,而在铁水保持高碳当量时,应有较高的碳量、较低的硅量,这样在添加合金后能获得最好的强度和断面均匀性、防止硅增加铁素体、粗化珠光体、中和合金元素的作用。同时,在机加工时,发现铸件内部的缩松现象也不见了,三角试片白口宽度降至4毫米以下,而铸件硬度仍可保持在HB=180—200左右,铸件薄壁处未出现“白口”现象,通过这样不断反复调整,终于生产出合格的铸件。
二、目标
少量合金元素及孕育处理相结合的方法,以使其基体组织得到强化、细化石墨并适当增加和稳定珠光体,形成碳化物以提高其铸铁的力学性能,其抗拉强度达到300N/mm2上,并采用敲三角试片,使其白口宽度控制在4mm以下, 防止“白口”现象的发生,以保证产品的质量。
三、分析
以往我厂生产的铸件,牌号都是HT200、HT250,其抗拉强度达不到新产品要求的300N/mm2以上,主要原因是铸件内部铁素体较多,奥氏体枝晶数量少,石墨粗长,从而分割基体,形成了许多微小裂纹,因此降低了铸件的机械性能。
C:孕育剂铁水包内处理
(3)炉前控制
A:光谱分析试样,调整其化学成分
B:用湿型三角试片检测,原铁水白口宽度一般控制在4毫米以下
(4)化学成分的选择
A:原铁水应保持较高碳当量,以使铁水具有良好流动性
B:铁水在相同的碳当量下,选用高碳硅比(C/Si)
C:提高铁液的出铁温度, 以使铁按配料百分比各自加入,含碳量用增碳剂调整;含硅量则用75%硅铁调整;含锰量用65%锰铁调整;磷和硫的含量均小于要求值,熔炼时铁水温度控制在1500℃——1520℃之间。
(一)、低合金化高强度灰铸铁(HT300)的理论设计和实际效果
HT300特征、化学成分关系表
铸铁牌号
试棒、三角试片特征
碳当
量
CE%
低合金化高强度灰铸铁(HT300)的研究和应用
张 峰
(上海烟草机械有限责任公司新场分厂)
一、前言
灰铸铁的发展始终是以获得100%珠光体基体组织为目标的,为此,许多铸铁工作者一直努力奋斗着。从早期采用降低碳硅含量以提高灰铸铁强度的方法,到后来采用孕育剂进行孕育处理,灰铸铁的力学性能指标在不断的得到提高。考虑到我厂生产的烟草机械产品在不断的更新和换代,相应地对我厂铸件材质的要求也越来越高,而如果采用原来的方法生产铸件,其材质的要求是达不到意大利“G、D”公司的要求的(我厂产品的技术从意大利G、D公司引进),而依靠进口,将不仅花费大量的人力和财力,也不利于我厂铸造水平的提高。因此,公司决定在无资料、无生产经验可以借鉴的前提下,把低合金化高强度灰铸铁作为攻关项目进行研究和开发。
四、解决方案
(1)、配料计算
A:通过计算,确保各原料最佳的加入比例:废钢25%;新生铁30%;回炉铁20%; 留用铁水为25%,使原铁水的化学成分达到其要求。
(2)、电炉熔炼工艺
A:选择合理的投料顺序
留用铁水……废钢……熔剂……新生铁……回炉铁……硅锰铁……除渣……增碳剂……合金……陈渣
B:变质剂铁水包内处理