实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验一、实验目的(1)掌握各种电力电子器件的工作特性。
(2)掌握各器件对触发信号的要求。
二、实验所需挂件及附件序型号备注号1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。
2DJK06 给定及实验器件该挂件包含“二极管”等几个模块。
3DJK07 新器件特性实验DJK09 单相调压与可调负4载5万用表自备将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R 串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。
实验线路的具体接线如下图所示:四、实验内容(1)晶闸管(SCR)特性实验。
(3)功率场效应管(MOSFET)特性实验。
(5)绝缘双极性晶体管(IGBT)特性实验。
五、实验方法(1)按图3-26接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压U调节过程中回路电流I以及器件的管压降U。
述步骤,并记录数据。
骤,并记录数据。
并记录数据。
骤,并记录数据。
根据得到的数据,绘出各器件的输出特性。
图一晶闸管SCR输出特性图二GTO输出特性图三GTO输出特性图四MOSFET输出特性图五IGBT输出特性七、注意事项(1) 双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。
为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。
当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。
(2)为保证功率器件在实验过程中避免功率击穿,应保证管子的功率损耗(即功率器件的管压降与器件流过的电流乘积)小于8W。
(3)为使GTR特性实验更典型,其电流控制在0.4A以下。
(4)在本实验中,完成的是关于器件的伏安特性的实验项目,老师可以根据自己的实际需要调整实验项目,如可增加测量器件的导通时间等实验项目。
八、实验心得体会不同的电力电子器件,因其制造工艺上的不同,其导通即关断过程存在一定的差异,通过对其工作特性曲线的分析可以发现:GTR和GTO是双极性电流驱动器件,具有电导调制效应,通流能力强,但开关速度较低,所需驱动功率大;而电力MOSFET是单极型电压驱动器件,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小。
IGBT综合了GTR和MOSFET的优点,具有良好的特性。
实验二锯齿波同步移相触发电路实验一、实验目的(1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
(2)掌握锯齿波同步移相触发电路的调试方法。
二、实验所需挂件及附件三、实验线路及原理锯齿波同步移相触发电路的原理图见DJK03-1挂件介绍中锯齿波同步移相触发电路原理图。
锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见DJK03-1挂件介绍部分和电力电子技术教材中的相关内容。
四、实验内容(1)锯齿波同步移相触发电路的调试。
(2)锯齿波同步移相触发电路各点波形的观察和分析。
五、思考题(1)锯齿波同步移相触发电路有哪些特点?答:锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成(2)锯齿波同步移相触发电路的移相范围与哪些参数有关?答:与电容C1、电位器RP1、电位器RP2、电位器RP3等参数有关。
六、实验方法(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V ±10%,而“交流调速”侧输出的线电压为240V。
如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。
在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。
①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。
②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。
③调节电位器RP1,观测“2”点锯齿波斜率的变化。
④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。
(2)调节触发脉冲的移相范围将控制电压Uct调至零(将电位器RP2顺时针旋到底),用示波器观察同步电压信号和“6”点U6的波形,调节偏移电压Ub(即调RP3电位器),使α=170°,其波形如下图所示。
锯齿波同步移相触发电路(3)调节Uct(即电位器RP2)使α=60°,观察并记录U1~U6及输出“G、K”脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。
U1U2U3U4U5U6幅值(V)0.480.340.110.340.80.038宽度(ms)2020207.2510七、实验报告(1)整理、描绘实验中记录的各点波形,并标出其幅值和宽度。
答:数据见表格。
(2)总结锯齿波同步移相触发电路移相范围的调试方法,如果要求在Uct=0的条件下,使α=90°,如何调整?答:调节RP3电位器即可。
八、注意事项(1) 双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。
为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。
当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。
(2)由于正弦波触发电路的特殊性,我们设计移相电路的调节范围较小,如需将α调节到逆变区,除了调节RP1外,还需调节RP2电位器。
(3)由于脉冲“G”、“K”输出端有电容影响,故观察输出脉冲电压波形时,需将输出端“G”和“K”分别接到晶闸管的门极和阴极(或者也可用约100Ω左右阻值的电阻接到“G”、“K”两端,来模拟晶闸管门极与阴极的阻值),否则无法观察到正确的脉冲波形。
九、实验心得体会锯齿波同步移相触发电路1、2由同步检测、锯齿波形成、移相控制、脉冲放大等环节组成,通过本实验使我更加理解锯齿波同步移相触发电路的工作原理及各元件的作用,并基本掌握掌握锯齿波同步移相触发电路的调试方法。
实验三单相半波可控整流电路实验一、实验目的(1) 掌握单结晶体管触发电路的调试步骤和方法。
(2) 掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。
(3) 了解续流二极管的作用。
二、实验所需挂件及附件三、实验线路及原理单结晶体管触发电路的工作原理及线路图已在1-3 节中作过介绍。
将DJK03 挂件上的单结晶体管触发电路的输出端“ G ”和“ K ”接到DJK02 挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R 负载用DK04 滑线变阻器接成并联形式。
二极管VD1 和开关S1 均在DJK06 挂件上,电感L d 在DJK02 面板上,有100mH 、200mH 、700mH 三档可供选择,本实验中选用700mH 。
直流电压表及直流电流表从DJK02 挂件上得到。
图3-3 单相半波可控整流电路四、实验内容(1) 单结晶体管触发电路的调试。
(2) 单结晶体管触发电路各点电压波形的观察并记录。
(3) 单相半波整流电路带电阻性负载时U d /U 2 = f(α) 特性的测定。
(4) 单相半波整流电路带电阻电感性负载时续流二极管作用的观察。
五、思考题(1) 单结晶体管触发电路的振荡频率与电路中电容C1 的数值有什么关系? 答:在一个梯形波周期内,V6可能导通、关断多次,但对晶闸管的触发只有第一个输出脉冲起作用。
电容C1的充电时间常数由等效电阻等决定,调节RP1改变C1的充电时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。
六、实验方法(1) 单结晶体管触发电路的调试将DJK01 电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V ,用两根导线将200V 交流电压接到DJK03 的“外接220V ”端,按下“启动”按钮,打开DJK03 电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。
调节移相电位器RP1 ,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30° ~170° 范围内移动?(2) 单相半波可控整流电路接电阻性负载触发电路调试正常后,按图3-3 电路图接线。
将滑线变阻器调在最大阻值位置,按下“启动”按钮,用示波器观察负载电压U d 、晶闸管VT 两端电压U VT 的波形,调节电位器RP1 ,观察α =30° 、60° 、90° 、120° 、150° 时U d 、U VT 的波形,并测量直流输出电压U d 和电源电压U 2 ,记录于下表中。