热管技术
由于热管具有导热性能好、结构简单、工作可靠、温度均匀 等良好性能.热管是传热领域的重大发明和科技成果,给人 类社会带来巨大的实用价值。
3
1.2简历
热管原理最早由美国工程师在1942年提出。 20世纪60年代初,开始研究和试制,最早被用于航天器与核 反应堆。 20世纪70年代,热管初次作为热能回收装臵应用于暖通行业。 80年代以后, 热管换热器的研制工作迅速开展。回转型、 分离型等新的结构型式相继出现,并日趋大型化。 近年来,工业中的广泛实际应用使热管换热器在余热利用领 域中脱颖而出。其结构形式多样,使用方式灵活,特别适用 于中、低温排气的余热回收。最近热管换热器在蓄能技术方 面又有了新的应用。 随着工业技术的发展,特别是考虑到现代能源形势的需要, 热管技术正越来越广泛地渗入到各个工业领域中,如:在航 空航天、核动力、太阳能、电子科技、冶金、建材、化工等 领域发挥着越来越重要的作用。
热管的管芯是一种紧贴管壳内壁的毛细结构, 通常用多层金属丝网或纤维、布等以衬里形式 紧贴内壁以减小接触热阻,衬里也可由多孔陶 瓷或烧结金属构成。如右图所示为几种不同的 管芯的结果示意图 热管的工作液要有较高的汽化潜热、导热系数,合适的饱和压力及沸点, 较低的粘度及良好的稳定性。工作液体还应有较大的表面张力和润湿毛细 结构的能力,使毛细结构能对工作液作用并产生必须的毛细力。工作液还 不能对毛细结构和管壁产生溶解作用,否则被溶解的物质将积累在蒸发段 破坏毛细结构。
什么叫沸腾极限? 什么叫冷凝极限?
冷凝极限是指通过冷凝段汽-液交 界面所能传递的最大热量。热管最 大传热能力可能受到冷凝段冷却能 力的限制,不凝性气体的存在降低 了冷凝段的冷却效率。
热管工作中当其蒸发段径向热流密度 很大时,将会使管芯内工作液体沸腾 。当径向热流密度达到某一临界值时 ,对于吸液芯的热管,由于所发生的 大量汽泡堵塞了毛孔,减弱或破坏了 毛细抽吸作用,致使凝结液回流量不 能满足蒸发要求。
6
2.2. 热管的工作过程
如图:当热管的一端受热时毛细芯中的液 体蒸发汽化,蒸汽在微小的压差下流向另 一端放出热量凝结成液体,液体在沿多孔 材料靠毛细力的作用流回蒸发段。如循 环往复,热量便从一端传到了另一端! 在这一热量转移的过程中,具体包含了以 下六个相互关联的过程: (1)热量从热源通过热管管壁和充满工作 液的吸液芯传递到液-气分界面; (2)液体在蒸发段的液-气分界面上蒸发; (3)蒸汽腔内的蒸汽从蒸发段流向冷凝段; (4)蒸汽在冷凝段内的液-气分界面上凝 结; (5)热量从液-气分界面通过吸液芯、液 体和管壁传给冷源; (6)在吸液芯内由于毛细作用(或重力等) 是冷凝后的工作液回流到蒸发段。
4
第二章
2.1热管的组成
热管及其特性
热管:是一种传热性极好的人工构 件。常用的热管由三部分组成:主 体为一根封闭的金属管(管壳), 内部空腔内有少量工作介质(工作 液)和毛细结构(管芯),管内的 空气及其他杂物必须排除在外。热 管工作时利用了三种物理学原理:
⑴在真空状态下,液体的沸点降低; ⑵同种物质的汽化潜热比显热高的多; ⑶多孔毛细结构对液体的抽吸力可使液 体流动。
什么叫毛细极限?
在热管运行中,当热管中的汽体液 体的循环压力降与所能提供的最大 毛细压头达到平衡时,该热管的传 热量也就达到了最大值。如果这时 加大蒸发量和冷凝量,则会因毛细 压头不足使抽回到蒸发段的液体不 能满足蒸发所需要的量,以致会发 生蒸发段吸液芯的干涸和过热。导 致壳壁温度剧烈升高,甚至“烧 毁”。
16
第三章
热管的分类
由于热管的用途、种类和型式较多,再加上热管在结构、材质和 工作液体等方面各有不同之处,故而对热管的分类也很多,常用的 分类方法有以下几种。 按照工作液体回流动力区分有芯热管、两相闭式热虹吸管(又称 重力热管)、重力辅助热管、旋转热管、电流体动力热管、磁流体 动力热管、渗透热管等等。 按照热管管内工作温度区分有低温热管、常温热管、中温热管、 高温热管等。 按照管壳与工作液体的组合区分有铜-水热管、碳钢-水热管、铝 -丙酮热管、不锈钢-钠热管等。 按照结构形式区分有普通热管、分离式热管、毛细泵回路热管、 微型热管、平板热管、径向热管等。 按照热管的功用划分有传输热量的热管、热二极管、热开关、热 控制用热管、仿真热管、制冷热管等。
热管内质量、压力和温度分布
热管液汽分界面的形状
(a)管起动前的液—汽交界面 (b)热管工作时的液—汽交界面 (c)吸液芯内液—汽界面参数
14
2.6热管的相容性及寿命
热管的相容性是指热管在预期的设计寿命内,管内工作液体同壳体不发 生显著的化学反应或物理变化,或有变化但不足以影响热管的工作性能。 相容性在热管的应用中具有重要的意义。只有长期相容性良好的热管, 才能保证稳定的传热性能、长期的工作寿命及工业应用的可能性。影响 热管寿命的因素很多,归结起来,造成热管不相容的主要形式有以下三 方面:
13
2.5热管的工作特性
对于普通热管,其液体和蒸汽循环的主 要动力是毛细材料和液体结合所产生的毛细 力。假设热管中沿蒸发段蒸发率是均匀的, 沿冷凝段冷凝率也是均匀的,则其质量、压 力分布、温度分布及弯月面曲率的分布如右 上图所示。 在蒸发段内,由于液体不断蒸发,使汽 液分界面缩回到管芯里,即向毛细孔一侧下 陷,使毛细结构的表面上形成弯月形凹面。 而在冷凝段,蒸汽逐渐凝结的结果使液汽分 界面高出吸液芯,故分界面基本上呈平面形 状,即界面的曲率半径为无穷大(见右上图 上部及右下图)。曲率半径之差提供了使工 质循环流动的毛细驱动力(循环压头),用以 克服循环流动中作用于工质的重力、摩擦力 以及动量变化所引起的循环阻力。
什么叫声速极限?
当蒸发段温度一定,降低冷凝段温 度可使蒸汽流速加大,传热量因而 加大。但当蒸发段出口汽速达到声 速时,进一步降低冷凝段温度也不 能再使蒸发段出口处汽速超过声速, 因而传热量也不再增加,这时热管 的工作达到了声速的极限。
11
什么叫携带极限?
热管中蒸汽与液体的流动方向相反, 在交界面上二者相互作用,阻止对方 流动。液体表面由于受逆向蒸汽流的 作用产生波动,当蒸汽速度高到能把 液面上的液体剪切成细滴并把它带到 冷凝段时,液体被大量携带走,使应 当通过毛细芯返回蒸发段去的液体不 足甚至中断,从而造成蒸发段毛细芯 干涸,使热管停止工作,这就达到了 热管的携带传热极限。
图2.1 热管示意图 1—管壳;2—管芯;3—蒸汽腔;4—工作液
从传热状况看,热管沿轴向可分为 蒸发段,绝热段和冷凝段三部分。
下面分别说明管壳、管芯、工作液
5
热管的管壳是受压部件,要求由高导热率、耐压、耐热应力的材料制造。 在材料的选择上必须考虑到热管在长期运行中管壳无腐蚀,工质与管壳 不发生化学反应,不产生气体。 壳材料有多种,以不锈钢、铜、铝、镍等较多,也可用玻璃、陶瓷等。 管壳的作用是将热管的工作部分封闭起来,在热端和冷端接受和放出热 量,并承受管内外压力不等时所产生的压力差。
什么叫冷冻启动极限?
在从冷冻状态启动过程中,蒸 发端来得蒸气可能在绝热段或 冷凝段再次冷冻,这将耗尽蒸 发段来的工作介质,导致蒸发 段干涸,热管无法正常启动工 作。
什么叫黏性极限?
在蒸汽温度低时,工作流体的 蒸汽在热管内的流动受粘性力 支配,即热管中蒸汽流动的粘 滞阻力限制了热管的最大传热 能力。粘性极限只与工质物性、 热管长度和蒸汽通道直径有关, 而与吸液芯的几何形状和结构 形式无关。
(4)热流方向的可逆性
一根水平放臵的有芯热管,由于其内部循环动力是毛细力, 因此任意一端受热就可作为蒸 发段,而另一端向外散热就成为冷凝段。
(5)热二极管与热开关性能
热二极管就是只允许热流向一个方向流动,而不允许向相反的方向流动;热开关则是当热源 温度高于某一温度时,热管开始工作,当热源温度低于这一温度时,热管就不传热。
9
2.3.热管的传热极限
从图中可以看出:当工作温度低时,最易出现粘性极限及声速极限。 而在高温下则应 防止出现毛细极限及沸腾极限。故热管的工作点必须选择在包络线的下方。
10
什么叫连续流动极限?
对于小热管,如微型热管,以及 工作温度很低的热管,热管内的 蒸气流动可能处于自由分子状态 或稀薄、真空状态。这时,由于 不能获得连续的蒸气流,传热能 力将受到限制。
热管技术及其应用
1
目录
一、背景 二、热管的特性 三、热管的分类 四、热管换热器 五、热管的应用
2
1.1背景
当今传热工程面临两大问题:研究高绝热材料和高导热材料。 具有良好导热性的材料有铝[(λ=202W/m•℃)]、柴铜[λ= 385W/ m•℃]、和银:λ=410W/ m•℃)],但其导热系数只能 达到 102W/m•℃的数量级,远不能满足某些工程中的快速散 热和传热需要,热管的发明就解决了这一问题。热管的相当 导热系数可达105W/m•℃的数量级.为一般金属材料的数百倍 乃至上千倍。它可将大量热量通过很小的截面积远距离地传 输而无需外加动力。
7
2.3.热管的传热极限
热管虽然是一种传热性能极好的元件,但也不可能无限加大热负荷, 其传热能力的上限值会受到一种或几种因素的限制,如毛细力、声速、 携带、冷冻启动、连续蒸气、蒸气压力及冷凝等,因而构成热管的传 热极限(或叫工作极限)。这些传热极限与热管尺寸、形状、工作介质、 吸液芯结构、工作温度等有关,限制热管传热量的极限类型是由该热 管在某种温度下各传热极限的最小值所决定的。具体来讲,这些极限 主要有(如图所示):
(6)恒温特性
普通热管的各部分热阻基本上不随着热量的变化而变化,因此热管各部分的温度随加热量变 化。但可变导热管,使得冷凝段的热阻随加热量的增加而降低、随加热量的减少而增加,这 样热管在加热量大幅度变化的情况下,蒸汽温度变化极小,实现温度的控制,这就是热管的 恒温特性。
(7)环境的适应性
热管的形状可随热源和冷源的条件而变化,热管可做成电机的转轴、燃气轮机的叶片、钻头、 手术刀等等,热管也可做成分离式的以适应长距离或冷热流体不能混合的情况下的换热;热 管既可以用于地面(重力场),也可用于空间(无重力场)。