《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解:系统的动能为:()222121x I l x m T &&+=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T &&&+=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω=&和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ&&&mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn =&和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解:系统的动能为:221θ&J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn =&和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
求固有频率。
图E1.4答案图E1.4解:对m 进行受力分析可得:33x k mg =,即33k mgx =如图可得:()()22221111 ,k b a mga k F x k b a mgb k F x +==+==()()mg k k b a k b k a b a x x a x x x x 212221212110++=+-+='+=()mg k mg k k k b a k b k a x x x 0321222123011=⎥⎦⎤⎢⎣⎡+++=+=则等效弹簧刚度为:()()2123223123212k k b a k k b k k a k k k b a k e ++++= 则固有频率为:()()()[]222132212321bk a k k b a k k m b a k k k m k e n ++++==ωmg ba a F +=2x x 21.7 质量1m 在倾角为α的光滑斜面上从高h 处滑下无反弹碰撞质量2m ,如图E1.7所示。
确定系统由此产生的自由振动。
图E1.7答案图E1.7解:对1m 由能量守恒可得(其中1v 的方向为沿斜面向下):211121v m gh m =,即gh v 21=对整个系统由动量守恒可得:()02111v m m v m +=,即gh m m m v 22110+=令2m 引起的静变形为2x ,则有:22sin kx g m =α,即kg m x αsin 22=令1m +2m 引起的静变形为12x ,同理有:()kg m m x αsin 2112+=得:kg m x x x αsin 12120=-=则系统的自由振动可表示为:t x t x x n nn ωωωsin cos 00&+=其中系统的固有频率为:21m m kn +=ω注意到0v 与x 方向相反,得系统的自由振动为:t v t x x n nn ωωωsin cos 00-=1.9 质量为m 、长为l 的均质杆和弹簧k 及阻尼器c 构成振动系统,如图E1.9所示。
以杆偏角θ为广义坐标,建立系统的动力学方程,给出存在自由振动的条件。
若在弹簧原长处立即释手,问杆的最大振幅是多少?发生在何时?最大角速度是多少?发生在何时?是否在过静平衡位置时?图E1.9答案图E1.9解:利用动量矩定理得:l l c a a k I ⋅-⋅-=θθθ&&&, 231ml I =033222=++θθθka cl ml &&&, 223mlka n =ωn ml cl ξω2322=, 32 1123mkl a c m c n <⇒<⋅=ωξa a k l mg ⋅=⋅02θ, 202ka mgl=θ1.12 面积为S 、质量为m 的薄板连接于弹簧下端,在粘性流体中振动,如图E1.12所示。
作用于薄板的阻尼力为Sv F d 2μ=,2S 为薄板总面积,v 为速度。
若测得薄板无阻尼自由振动的周期为0T ,在粘性流体中自由振动的周期为d T 。
求系数μ。
l c图E1.12解:平面在液体中上下振动时:02=++kx x S x m &&&μ2T m k n πω==, dn d T πξωω212=-=n n m S m S ωμξξωμ=⇒= 22, kS 222μξ=kS k 2221μξ-=-2020220222T T T ST mk S k T T d dd -=⇒-=πμμππ2.1 图E2.2所示系统中,已知m ,c ,1k ,2k ,0F 和ω。
求系统动力学方程和稳态响应。
图E2.1答案图E2.1(a) 答案图E2.1(b)解:等价于分别为1x 和2x 的响应之和。
先考虑1x ,此时右端固结,系统等价为图(a ),受力为图(b ),故:()()x c x k x c c x k k x m &&&&112121+=++++ t A c A k kx x c x m 1111111cos sin ωωω+=++&&&(1)21c c c +=,21k k k +=,mk k n 21+=ω (1)的解可参照释义(2.56),为:()()()()()()()22211111222111121cos 21sin s s t kA c s s t kA k t Y ξθωωξθω+--++--=(2)其中:n s ωω1=,21112ss tg -=-ξθ ()()()212122122122112121k k c c k k k k c s ++++=⎪⎪⎭⎫⎝⎛++=+ωωξ()()()()()21212212212122112122121222 121k k c c m k kk k c c k k m s s +++-+=⎥⎦⎤⎢⎣⎡+++⎪⎪⎭⎫ ⎝⎛+-=+-ωωωωξ故(2)为:()()()()()()()()211212212212121212112122122121111111111sin cos sin θθωωωωωωθωωθω+-++-++=++-+-+-=t c c m k kc k A c c m k k t A c tA k t xx k 2x&2 (11x k - )11x x c &&-1()()m k k c c tg k k m k k c tg s s tg 2121121121212111211112ωωωωξθ-++=+-+=-=--- 11112k c tg ωθ-=考虑到()t x 2的影响,则叠加后的()t x 为:()()()()⎪⎪⎭⎫ ⎝⎛+-++-++-++=--=∑i i i i i i i i i i i i i k c tg m k k c c tg t c c m k k c k A t x ωωωωωωω12212112122212221222sin2.1 一弹簧质量系统沿光滑斜面作自由振动,如图T 2-1所示。
已知,︒=30α,m = 1 kg ,k = 49 N/cm ,开始运动时弹簧无伸长,速度为零,求系统的运动规律。
图 T 2-1答案图 T 2-1解:0sin kx mg =α,1.049218.91sin 0=⨯⨯==kmg x αcm70110492=⨯==-m k n ωrad/st t x x n 70cos 1.0cos 0-==ωcm2.2 如图T 2-2所示,重物1W 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2W 从高度为h 处自由下落到1W 上而无弹跳。
求2W 下降的最大距离和两物体碰撞后的运动规律。
图 T 2-2答案图 T 2-2解:222221v gW h W =,gh v 22=动量守恒:122122v gW W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+=故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x tx t x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=&W 2W 12.4 在图E2.4所示系统中,已知m ,1k ,2k ,0F 和ω,初始时物块静止且两弹簧均为原长。
求物块运动规律。
图E2.4答案图E2.4解:取坐标轴1x 和2x ,对连接点A 列平衡方程:()0sin 012211=+-+-t F x x k x k ω即:()t F x k x k k ωsin 022121+=+(1)对m 列运动微分方程:()1222x x k x m --=&&即:12222x k x k x m =+&&(2)由(1),(2)消去1x 得:t k k kF x k k k k x m ωsin 2120221212+=++&&(3)故:()21212k k m k k n +=ω由(3)得:()()()⎪⎪⎭⎫ ⎝⎛--+=t t k k m k F t x n n n ωωωωωωsin sin 22212022.5在图E2.3所示系统中,已知m ,c ,k ,0F 和ω,且t =0时,0x x =,0v x=&,求x k)1x x k - 2x m &&(2k2系统响应。