当前位置:文档之家› (完整word版)圆形有界磁场中“磁聚焦”规律(有答案)剖析

(完整word版)圆形有界磁场中“磁聚焦”规律(有答案)剖析

圆形有界磁场中“磁聚焦”的相关规律练习当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。

规律二:平行射入圆形有界磁场的相同带电粒子,如果圆形磁场的半径与圆轨迹半径相等,则所有粒子都从磁场边界上的同一点射出,并且出射点的切线与入射速度方向平行,如乙图所示。

【典型题目练习】1.如图所示,在半径为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板.从圆形磁场最高点P垂直磁场射入大量的带正电,电荷量为q,质量为m,速度为v的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是()A.只要对着圆心入射,出射后均可垂直打在MN上B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D.只要速度满足qBRvm,沿不同方向入射的粒子出射后均可垂直打在MN上2.如图所示,长方形abed的长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以e为圆心eb为半径的四分之一圆弧和以O为圆心Od为半径的四分之一圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场)磁感应强度B=0.25T。

一群不计重力、质量m=3×10-7kg、电荷量q=+2×10-3C的带正电粒子以速度v=5×102m/s沿垂直ad方向且垂直于磁场射人磁场区域,则下列判断正确的是()A.从Od边射入的粒子,出射点全部分布在Oa边B.从aO边射入的粒子,出射点全部分布在ab边C.从Od边射入的粒子,出射点分布在ab边D.从ad边射人的粒子,出射点全部通过b点3.如图所示,在坐标系xOy内有一半径为a的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场,在直线y=a的上方和直线x=2a的左侧区域内,有一沿x轴负方向的匀强电场,场强大小为E,一质量为m、电荷量为+q(q>0)的粒子以速度v从O 点垂直于磁场方向射入,当入射速度方向沿x轴方向时,粒子恰好从O1点正上方的A点射出磁场,不计粒子重力,求:(1)磁感应强度B的大小;(2)粒子离开第一象限时速度方向与y轴正方向的夹角;(3)若将电场方向变为沿y轴负方向,电场强度大小不变,粒子以速度v从O点垂直于磁场方向、并与x轴正方向夹角θ=300射入第一象限,求粒子从射入磁场到最终离开磁场的总时间t 。

4.如图所示的直角坐标系中,从直线x =−2l 0到y 轴区域存在两个大小相等、方向相反的有界匀强电场,其中x 轴上方的电场方向沿y 轴负方向,x 轴下方的电场方向沿y 轴正方向。

在电场左边界从A (−2l 0,−l 0)点到C (−2l 0,0)点区域内,连续分布着电量为+q 、质量为m 的粒子。

从某时刻起,A 点到C 点间的粒子依次连续以相同速度v 0沿x 轴正方向射入电场。

从A 点射入的粒子恰好从y 轴上的A '(0,−l 0)点沿沿x 轴正方向射出电场,其轨迹如图所示。

不计粒子的重力及它们间的相互作用。

(1)求从AC 间入射的粒子穿越电场区域的时间t 和匀强电场的电场强度E 的大小。

(2)求在A 、C 间还有哪些坐标位置的粒子通过电场后也能沿x 轴正方向运动?(3)为便于收集沿x 轴正方向射出电场的所有粒子,若以直线x =2l 0上的某点为圆心的圆形磁场区域内,设计分布垂直于xOy 平面向里的匀强磁场,使得沿x 轴正方向射出电场的粒子经磁场偏转后,都能通过x =2l 0与圆形磁场边界的一个交点。

则磁场区域最小半径是多大?相应的磁感应强度B 是多大?5.如图所示,在xoy 坐标系中分布着三个有界场区:第一象限中有一半径为r =0.1m 的圆形磁场区域,磁感应强度B 1=1T ,方向垂直纸面向里,该区域同时与x 轴、y 轴相切,切点分别为A 、C ;第四象限中,由y 轴、抛物线FG (2100.025y x x =-+-,单位:m )和直线DH (0.425y x =-,单位:m )构成的区域中,存在着方向竖直向下、强度E =2.5N /C 的匀强电场;以及直线DH 右下方存在垂直纸面向里的匀强磁场B 2=0.5T 。

现有大量质量m =1×10-6 kg (重力不计),电量大小为q =2×10-4 C ,速率均为20m/s 的带负电的粒子从A 处垂直磁场进入第一象限,速度方向与y 轴夹角在0至1800之间。

(1)求这些粒子在圆形磁场区域中运动的半径; (2)试证明这些粒子经过x 轴时速度方向均与x 轴垂直;(3)通过计算说明这些粒子会经过y 轴上的同一点,并求出该点坐标。

6.如图所示,真空中一平面直角坐标系xOy 内,存在着两个边长为L 的正方形匀强电场区域Ⅰ、Ⅱ和两个直径为L 的圆形磁场区域Ⅲ、Ⅳ。

电场的场强大小均为E ,区域Ⅰ的场强方向沿x 轴正方向,其下边界在x 轴上,右边界刚好与区域Ⅱ的边界相切;区域Ⅱ的场强方向沿y 轴正方向,其上边界在x 轴上,左边界刚好与刚好与区域Ⅳ的边界相切。

磁场的磁感应强度大小均为22mE qL ,区域Ⅲ的圆心坐标为(0,2L)、磁场方向垂直于xOy 平面向外;区域Ⅳ的圆心坐标为(0,2L-)、磁场方向垂直于xOy 平面向里。

两个质量均为m 、电荷量均为q 的带正电粒子M 、N ,在外力约束下静止在坐标为(32L -,2L )、(32L -,23L +)的两点。

在x 轴的正半轴(坐标原点除外)放置一块足够长的感光板,板面垂直于xOy 平面。

将粒子M 、N 由静止释放,它们最终打在感光板上并立即被吸收。

不计粒子的重力。

求: (1)粒子离开电场Ⅰ时的速度大小。

(2)粒子M 击中感光板的位置坐标。

(3)粒子N 在磁场中运动的时间。

7.如图所示,半圆有界匀强磁场的圆心O 1在x 轴上,OO 1距离等于半圆磁场的半径,磁感应强度大小为B 1。

虚线MN 平行x 轴且与半圆相切于P 点。

在MN 上方是正交的匀强电场和匀强磁场,电场场强大小为E ,方向沿x 轴负向,磁场磁感应强度大小为B 2。

B 1,B 2方向均垂直纸面,方向如图所示。

有一群相同的正粒子,以相同的速率沿不同方向从原点O 射入第I 象限,其中沿x 轴正方向进入磁场的粒子经过P 点射入MN 后,恰好在正交的电磁场中做直线运动,粒子质量为m ,电荷量为q (粒子重力不计)。

求: (1)粒子初速度大小和有界半圆磁场的半径。

(2)若撤去磁场B 2,则经过P 点射入电场的粒子从y 轴出电场时的坐标。

(3)试证明:题中所有从原点O 进入第I 象限的粒子都能在正交的电磁场中做直线运动。

8.如图甲所示,真空中有一个半径r =0.5m 的圆形磁场,与坐标原点相切,磁场的磁感应强度大小B =2.0×10−3T ,方向垂直于纸面向里,在x =r 处的虚线右侧有一个方向竖直向上的宽度L =0.5m 的匀强电场区域,电场强度E =1.5×103N/C ,在x =2m 处有一垂直x 方向的足够长的荧光屏,从O 点处向不同方向发射出速率相同的比荷91.010/qC kg m=⨯带负电的粒子,粒子的运动轨迹在纸面内。

一个速度方向沿y 轴正方向射入磁场的粒子M ,恰能从磁场与电场的相切处进入电场。

不计重力及阻力的作用。

求: (1)粒子M 进入电场时的速度。

(2)速度方向与y 轴正方向成30°(如图中所示)射入磁场的粒子N ,最后打到荧光屏上,画出粒子N 的运动轨迹并求该发光点的位置坐标。

9.如图甲所示,质量m =8.0×10−25kg ,电荷量q =1.6×10−15C 的带正电粒子从坐标原点O 处沿xOy 平面射入第一象限内,且在与x 方向夹角大于等于30°的范围内,粒子射入时的速度方向不同,但大小均为v 0=2.0×107m/s 。

现在某一区域内加一垂直于xOy 平面向里的匀强磁场,磁感应强度大小B =0.1T ,若这些粒子穿过磁场后都能射到与y 轴平行的荧光屏MN 上,并且当把荧光屏MN 向左移动时,屏上光斑长度和位置保持不变。

(π=3.14)求: (1)粒子从y 轴穿过的范围。

(2)荧光屏上光斑的长度。

(3)打到荧光屏MN 上最高点和最低点的粒子运动的时间差。

(4)画出所加磁场的最小范围(用斜线表示)。

参考答案1.当v ⊥B 时,粒子所受洛伦兹力充当向心力,做半径和周期分别为mv R qB =、2m T qBπ=的匀速圆周运动;只要速度满足qBRv m=时,在磁场中圆周运动的半径与圆形磁场磁场的半径相等,不同方向入射的粒子出射后均可垂直打在MN 上,选项D 正确。

2.由0.3mvR m qB==知,在磁场中圆周运动的半径与圆形磁场磁场的半径相等,从Oa 入射的粒子,出射点一定在b 点;从Od 入射的粒子,经过四分之一圆周后到达be ,由于边界无磁场,将沿be 做匀速直线运动到达b 点;选项D 正确。

3.解析:(1)当粒子速度沿x 轴方向入射,从A 点射出磁场时,几何关系知:r =a ;由2v qvB m r=知:mv mv B qr qa ==(2)从A 点进入电场后作类平抛运动; 沿水平方向做匀加速直线运动:2x Eqv a m= 沿竖直方向做匀速直线运动:v y =v 0;∴粒子离开第一象限时速度与y 轴的夹角:22tan xy v Eqav mv θ== (3)粒子从磁场中的P 点射出,因磁场圆和粒子的轨迹圆的半径相等,OO 1PO 2构成菱形,故粒子从P 点的出射方向与OO 1平行,即与y 轴平行;轨迹如图所示; ∴粒子从O 到P 所对应的圆心角为θ1=600,粒子从O 到P 用时:163T at vπ==。

由几何知识可知,粒子由P 点到x 轴的距离13sin S a a θ==; 粒子在电场中做匀变速运动的时间:22mvt Eq=; 粒子磁场和电场之间匀速直线运动的时间:32()(23)a S at v --==; 粒子由P 点第2次进入磁场,从Q 点射出,PO 1QO 3构成菱形;由几何知识可知Q 点在x 轴上,即为(2a ,0)点;粒子由P 到Q 所对应的圆心角θ2=1200,粒子从P 到Q 用时:4233T at vπ==; ∴粒子从射入磁场到最终离开磁场的总时间:1234(23)2aa mvt t t t t vEqπ-=+++=++。

4.解析:(1)带电粒子在电场中做类平抛运动,沿水平方向匀速运动,有02l t v =从A 点入射的粒子在竖直方向匀加速运动,由轨迹对称性性可知201()22Eq t l m =解得2002082ml mv E qt ql == (2)设距C 点为y ∆处入射的粒子通过电场后也沿x 轴正方向,第一次达x 轴用时t ∆,有水平方向0x v t ∆=∆竖直方向21()2qEy t m∆=∆ 欲使粒子从电场射出时的速度方向沿x 轴正方向,有022l n x =⋅∆ (n =1,2,3,…)解得:2002201()2qE l l y n m v n∆==即在A 、C 间入射的粒子通过电场后沿x 轴正方向的y 坐标为021y l n =- (n =1,2,3,…)(3)当n =1时,粒子射出的坐标为10y l =当n =2时,粒子射出的坐标为2014y l =-当n ≥3时,沿x 轴正方向射出的粒子分布在y 1到y 2之间(如图)y 1到y 2之间的距离为12054L y y l =-=;则磁场的最小半径为 0528L l R == 若使粒子经磁场偏转后汇聚于一点,粒子的运动半径与磁场圆的半径相等(如图),轨迹圆与磁场圆相交,四边形PO 1QO 2为棱形,由20mv qv B R= 得:0085mv B ql =5.解析:(1)由211v qvB m R =知:110.1mvR m B == (2)考察从A 点以任意方向进入磁场的的粒子,设其从K 点离开磁场,O 1和O 2分别是磁场区域和圆周运动的圆心,因为圆周运动半径和磁场区域半径相同,因此O 1AO 2K 为菱形,离开磁场时速度垂直于O 2K ,即垂直于x 轴,得证。

相关主题