浮阀塔设计示例
设计条件
拟建一浮阀塔用以分离某种液体混合物,决定采用F1型浮阀(重阀),试按下述条件进行浮阀塔的设计计算。
气相流量V s = 1.27m3/s;液相流量L s = 0.01m3/s;
气相密度ρV = 3.62kg/m3;液相密度ρL = 734kg/m3;
混合液表面张力σ= 16.3mN/m,平均操作压强p = 1.013×105Pa。
设计计算过程
(一)塔径
欲求出塔径应先计算出适宜空塔速度。
适宜空塔速度u一般为最大允许气速u F的0.6~0.8倍
即:u=(0.6~0.8)u F
式中C可由史密斯关联图查得,液气动能参数为:
取板间距H T=0.6m,板上液层高度h L=0.083m,图中的参变量值H T-h L=0.6-0.083 =0.517m。
根据以上数值由图可得液相表面张力为20mN/m时的负荷系数C20 =0.1。
由所给出的工艺条件校正得:
最大允许气速:
取安全系数为0.7,则适宜空塔速度为:
由下式计算塔径:
按标准塔径尺寸圆整,取D = 1.4m;
实际塔截面积:
实际空塔速度:
安全系数:在0.6~0.8范围间,合适。
(二)溢流装置
选用单流型降液管,不设进口堰。
1)降液管尺寸
取溢流堰长l w=0.7D,即l w/D=0.7,由弓形降液管的结构参数图查得:A f/A T=0.09,W d/D=0.15
因此:弓形降液管所占面积:A f=0.09×1.54=0.139(m2)
弓形降液管宽度:W d=0.15×1.4=0.21(m2)
验算液体在降液管的停留时间θ,
由于停留时间θ>5s,合适。
2)溢流堰尺寸
由以上设计数据可求出:
溢流堰长l w=0.7×1.4=0.98m
采用平直堰,堰上液层高度可依下式计算,式中E近似取1,即
溢流堰高:h w=h L-h ow =0.083-0.033=0.05m
液体由降液管流入塔板不设进口堰,并取降液管底隙处液体流速u0′= 0.228m/s;
降液管底隙高度:
浮阀数及排列方式:
1)浮阀数
初取阀孔动能因数F0 = 11,阀孔气速为:
每层塔板上浮阀个数:
(个)
2)浮阀的排列
按所设定的尺寸画出塔板,并在塔板的鼓
泡区内依排列方式进行试排,确定出实际的阀
孔数。
已知W d = 0.21m,选取无效边缘区宽区
W C = 0.05m、破沫区宽度W S=0.075m,由
下式计算鼓泡区面积,即:
浮阀的排列方式采用等腰三角形叉排。
取同一横排的空心距t=75mm,则等腰三角形的高度:
由于塔直径D=1400mm,需采用分块式塔板四块(其中两块弓形板、通道板和矩形板各一块)。
考虑到各分块的支承与衔接要占去一部分鼓泡区面积,因此排间距t′应小于计算值,故取t′=0.065m。
现按t=75mm、t′=65mm的等腰三角形叉排方式画出浮阀排列图,可排出阀孔数180个,重新核算以下参数:
阀孔气速:
动能因数:
动能因数在9~12之间,合适。
塔板开孔率:
开孔率在10%~14%之间,合适。
(三)塔板流体力学验算
1)塔板压降
利用下式计算:
(1)干板阻力
临界孔速:<u0
因阀孔气速u0大于其临界阀孔气速u0C,故干板阻力计算式为:
(2)板上充气液层阻力
本设备分离烃化液,液相为碳氢化合物,可取充气系数ε0= 0.5。
(3)液体表面张力造成的阻力
所以:h p=0.047+0.042+0.0005=0.0895 m
单板压降:
单板压降偏高。
(一般对于常压精馏塔应在260~530Pa为宜)。
2)降液管液泛校核
为了防止降液管液泛现象发生,要求控制降液管内清液层高度H d≤φ(H T+H w)。
其中:H d=h p+h L+h d
(1)气体通过塔板的压强降所相当的液柱高度h P前面已求出,h P=0.0895m。
(2)液体通过降液管的压头损失(不设进口堰)
(3)板上液层高度
前已选定h L=0.083m
所以H d=0.00895+0.083+0.008=0.181m
取降液管中泡沫层相对密度φ=0.5,前已选定板间距H T=0.6m,h w=0.05m。
则φ(H T+H w)=0.5(0.6+0.05)=0.325m
可见,H d<φ(H T+H w),符合防止降液管液泛要求。
3)液体在降液管内停留时间
应保证液体在降液管内的停留时间大于3~5s,才能使得液体所夹带气体的释出。
本设计
>5s
可见,所夹带气体可以释出。
4)雾沫夹带量校核
依下面两式分别计算泛点率F,即
及
板上液体流径长度
板上液流面积
查得泛点负荷因数C F=0.141、物性系数K=1.0,将以上数据代入:
及
对于大塔,为避免过量雾沫夹带,应控制泛点率不超过80%。
上两式计算的泛点率都在80%以下,故可知雾沫夹带量能够满足e V<0.1kg(液)/kg(气)的要求。
5)严重漏液校核
当阀孔的动能因数F0低于5时将会发生严重漏液,前面已计出F0=11.24,可见不会发生严重漏液。
(四)塔板负荷性能图
1)气体负荷下限线(漏液线)
对于F1型重阀,因动能因数F0<5时会发生严重漏液,故取F0=5计算相应的气相流量(V S,min):
2)过量雾沫夹带线
根据前面雾沫夹带校核可知,对于大塔,取泛点率F = 0.8,那么
整理得:
雾沫夹带线为直线,由两点即可确定。
当L S=0时,V S=2.035m3/s;当L S=0.01时,V S=1.846m3/s。
由这两点便可绘出雾沫夹带线。
3)液相负荷下限线
对于平直堰,其堰上液层高度h ow必须要大于0.006m。
取h ow=0.006m,可作出液相负荷下限线。
取E=1、代入l w则可求出(L S)min:
4)液相负荷上限线
液体的最大流量应保证在降液管中停留时间不低于3~5s,取θ= 5s作为液体在降液管中停留时间的下限,则:
5)液泛线
先求出V s与L s的关系,就可在操作范围内任意取若干点,从而绘出液泛线。
其中:
将计算出的a、b、c、d值代入上式方程并整理可得:
在操作范围内任意取若干L s值,由上式可算出相应的V s值,结果列于下表。
将以上五条线标绘在同一V s~L s直角坐标系中,画出塔板的操作负荷性能图。
将设计点(L s,V s)标绘在图中,如P点所示,由原点O及P作操作线OP。
操作线交严重漏液线①于点A,过量雾沫夹带线②于点B。
由此可见,此塔板操作负荷上下限受严重漏液线①及过量雾沫夹带线②的控制。
分别从图中A、B两点读得气相流量的下限
V min及上限V max,可求得该塔的操作弹性。
设计结果
现将以上设计计算结果列于下附表。
附表:浮阀塔板工艺设计计算结果表
11。