电梯基本原理(电气)
与轿内操纵箱发出的内指令信号进行记忆,并和其
它专用信号(如层搂、减速、平层、安全等信号)
加以综合分析后,由电梯司机或乘用人员控制电梯
运行的控制方式。
8.4.1电梯基本原理 主要控制要求有如下。 (1)有司机或无司机控制; (2)自动开关门; (3)到达预定停靠层站,提前减速,平层停车时自动门; (4)到达上、下端站,提前强迫减速; (5)厅外有召唤装置,轿内有指令装置,能自动记忆召唤 和指令,响应之后,能自动将召唤和指令消除(召唤和 指令的记忆与消除); (6)能自动选择运行方向,在司机操纵下,能强迫决定运 行方向(选向); (7)能根据指令和召唤的位置,自动选择停靠层站,并自 动平层停车(选层、平层); (8)厅外和轿内有指示电梯运行方向和所在位置的指示信 号(层搂检测与指层)。
2. 指令和召唤回路
指令和召唤回路的 作用 是:将轿内指令和 厅外 召唤信号记忆并指 示,当电梯响应 后自动将 其消除。 记忆和消除可用 PLC的SET和 RST指令实现。 (1)指令回路 指令回路梯形图如 图所示
(2)召唤回路
由于除两个端站外,其 它各层均有两个召唤 (上召、下召),而且 召唤的响应是顺向响应。 另外若电梯在直 驶运行时不响应召唤, 此时召唤应保留。所以 召唤回路与电梯的运行 方向以及是否直驶密切 相关,为此在召唤回路 中加入了反映直驶和方 向监视的继电器M1和 M2。
电梯基本原理
电梯基本原理
用FX2N-48MR实现四层四站双速客梯集选控制的控制系统。主拖动 采用交流双速电动机进行拖动。
1. 电梯基本原理 电梯是机械、电气紧密结合的大型机电产品。主要由机房、井道、 轿厢、门系统和电气控制系统组成。
井道中安装有导轨,轿厢和对重由曳[ye]引钢丝绳连接,曳引钢丝 绳挂在曳引轮上,曳引轮由曳引电动机拖动。轿厢和对重都装有各自 的导靴,导靴卡在导轨上。曳引轮运转带动轿厢和对重沿各自导轨做 上下相对运动,轿厢上升,对重下降。这样可通过控制曳引电动机来 控制轿厢的启动、加速、运行、减速、平层停车,实现对电梯运行的 控制。
门 电 路 的 控 制 梯 形 图 如 下 图 所 示
8.2 PLC在交通灯控制中的应用
• 1.交通灯的控制要求
•
当按下起动按钮SB1时,东西方向红 灯亮30 s,南北方向绿灯亮25 s,绿灯闪 亮3 s,每秒闪亮1次,然后黄灯亮2 s。
•
当南北方向黄灯熄灭后,东西方向绿 灯亮25 s,绿灯闪亮3次,每秒闪亮1次, 然后黄灯亮2 s,南北方向红灯亮30 s, 就这样周而复始地不断循环。当按下停 止按钮I0.1时,系统并不能马上停止,要 完成1个工作周期后方可停止工作。
8.4.3 I/O编号分配
M101: 1楼层楼继电器 M103: 3楼层楼继电器 M106: 换速微分信号 M2: 向上运行监视 M4: 下方向选择 M6: 下方向控制继电器 M8: 下召换速 M11: 强迫向上 M13: 关门启动 M15: 运行继电器 M17: 直驶继电器 T1: 停站时间 T3: 二慢减速时间 T5: 开门执行时间 M102: 2楼层楼继电器 M104: 4楼层楼继电器 M1: 向上运行监视 M3: 上方向选择 M5: 上方向控制继电器 M7: 上召换速 M9: 指令换速 M12: 强迫向上 M14: 停车继电器 M16: 安全触板继电器 T0: 快加速时间 T2: 一慢减速时间 T4: 三慢减速时间
(2)强迫选向 若电梯工作在 司机方式,可通过 操纵箱上的向上或 向下按钮,来干预 电梯的运行方向, 即强迫使其向上或 向下。
(3)检修选向 若电梯工作在检 修方式,同样可使 用向上或向下按钮, 使电梯以检修的速 度向上或向下运行。 电梯的选向回路梯 形图如图所示。
4. 选层电路
选层意味着要减速(换速)准备平层停车。电梯的选层分指 令选层和召唤选层,即因某层有召唤或有该层的指令使电梯在该 层是否停车。其中指令选层是绝对的,若电梯运行正常,指令一 定能使电梯在该层减速停车。 召唤选层是有条件的,一是召唤选层必须满足同向,即与 电梯的运行方向一致,这就是所谓的“顺向截车”;二是直驶 时可将召唤屏蔽,即电梯直驶时,即使同向的召唤也不能使电 梯减速停车。
8.1 PLC控制系统设计步骤 8.2 PLC在机床控制中的作用 8.3 PLC在化工生产过程中的应用 8.4 PLC在集选控制电梯中的应用 8.5 PLC随动控制系统中的应用
8.1 PLC控制系统设计步骤
1、可编程控制器控制系统设计的基本步骤 (1)系统设计的主要内容 ① 拟定控制系统设计的技术条件 ② 选择电气传动形式和电动机、电磁阀等执行机构 ③ 选定 PLC 的型号 ④ 编制 PLC 的输入 / 输出分配表或绘制输入 / 输出端子接线图 ⑤ 根据系统设计的要求编写软件规格说明书,然后再用 相应的编程语言(常用梯形图)进行程序设计 ⑥ 了解并遵循用户认知心理学,重视人机界面的设计,增强人与机 器之间的友善关系 ⑦ 设计操作台、电气柜及非标准电器元部件 ⑧ 编写设计说明书和使用说明书
8.4.3 I/O编号分配
Y0: 换速动作输出 Y1 Y2 Y3:楼层指层BCD码输出(Y1为高位、Y3为低位) Y4:1内指令继电器(含1上) Y5:2内指令继电器(含1上) Y6:3内指令继电器(含1上) Y7:4内指令继电器(含1上) Y10: 2上召继电器 Y11: 3上召继电器 Y12: 2下召继电器 Y13: 3下召继电器 Y14: 上运行指示 Y15: 下运行指示 Y16: 上运行继电器 Y17: 下运行继电器 Y20: 快车继电器 Y21: 快加速继电器 Y22: 慢车继电器 Y23: 1慢减速继电器 Y24: 2慢减速继电器 Y25: 3慢减速继电器 Y26: 开门继电器 Y27: 关门继电器
M102: 2楼层楼继电器
8.4.4拖动回路、门电路及系统连接
门电路及电气安全回路图
8.4.5控制系统各环节的作用及实现
1. 层楼继电器电路的实现
要对电梯进行控制,首要的问题就是反映电梯实际所在的
位置(楼层)。
层楼继电器回路就是完成这一功能的。每一层对应一个层 楼继电器,电梯在哪一层,对应楼层的层楼继电器就会 动作。 PLC具有数据传送、算术计算、数据比较处理等功能,所
3.选向回路
选向回路的作用,是根据目前电梯的位置和指令、召唤 的情况,决定电梯的运行方向,是向上或是向下。 电梯方向的选择,实际就是将指令和召唤的位置与电 梯实际位置相比较,若前者在上(位置的上下)电梯则选 择向上,相反则选择向下。 方向的实现:首先由层楼继电器形成选向链,然后将每层的指 令和召唤对应接入。 实际决定电梯的运行方向有以下三种情况。 (1)自然选向 如上分析,电梯自己判断来选择方向。
以用PLC很容易能实现层楼电路:
8.6.5控制系统各环节的作用及实现
启用一数据寄存器D0, 电梯在最下层端站时可将1 送入D0,最上层端站时, 将最高层数送入D0;电梯 每上升一层将D0自动加1; 电梯每下降一层D0自动 减1,这样使D0中存放的始 终是层数; 然后,将D0分别与1、2、 3、……相比较,等于几就 说明电梯在几,这时驱动对 应的层楼继电器,实现层楼 电路。 四层四站的层楼继电器 电路梯形图如右图所示。
•
2.I/O元件地址分配表
•
I/O元件地址分配表如表8-2所示。
•
3.设计顺序功能图
•
根据控制要求设计的顺序功能图如图 8-8所示。
图8-8
交通灯顺序功能图
•
4.设计梯形图程序
•
根据顺序功能图使用以转换为中心的 编程方法设计出的梯形图如图8-9所示。
图8-9
交通灯梯形图程序
第8章 PLC在工业控制中的应用
5. 电梯的运行线路
运行线路是电梯控制系统的核心。电梯是由曳引电动机拖动(主 回路),主回路的工作受运行线路的控制,以形成如图所示的速度曲 线,决定电梯何时启动加速,何时运行,何时减速,何时平层停车。 所以电梯的主要性能指标(额定速度、舒适感、平层精度等)由运行 线路决定。
(1)启动 电梯的启动,方向是首 要条件,门锁(厅门轿门是否关 好)等安全因素也是必要的。 (2)减速 当电梯选中某层,意味 着将在该层停车,达到换速点就 应减速,为平层停车作准备。 (3)平层停车 当减速运行到平层 点时,说明轿门门坎与厅门门坎 基本平齐,可以停车。即将主回 路曳引电动机电源断开,并实施 电磁抱闸。一般平层感应器置于 轿厢顶上,如图所示。注意:当 上、下平层感应器全部动作后, 表示到平层点。
8.4.2电梯电气控制系统的组成
平层信号
平层 门锁 门电路
拖动
减速
减速信号
启动
选向选层
层楼电路
层楼信号
指令召唤
指层
8.4.3 I/O编号分配
X0: 换速信号 X2: 下终端限位 X4: 2内指令输入 X6: 4内指令输入 X10: 3上召输入 X12: 3下召输入 X14: 平层信号输入 X16: 开门信号输入 X20: 强迫向上按钮输入 X22: 司机/自动运行方式 X24: 安全触板信号输入 X1: 上终端限位 X3: 1内指令(含1上召)输入 X5: 3内指令输入 X7: 2上召输入 X11: 2下召输入 X13: 门锁信号输入 X15: 门区信号输入 X17: 关门信号输入 X21: 强迫向下按钮输入 X23: 检修运行方式 X25: 直驶按钮信号输入
运 行 线 路 控 制 的 梯 形 图 如 图 所 示
运 行 线 路 控 制 的 梯 形 图 如 图 所 示
6. 电梯门的控制
门电路是电梯控制系统中较为独立的单元。它的作用是实现 电梯门的开和关。 门电路和控制系统的联系就在于这一点,由各厅门和轿门的 门锁电气限位开关的常开触电串联后,作为门锁信号(X13)。 X13为ON,表示全部门安全关闭,可正常运行,否则不能运行。 开、关门由门电动机驱动,通过开、关门继电器KMJ、GMJ控制 M的正反转实现。因此,设计门的控制时只需考虑开与关门的情 况,对应驱动KMJ或GMJ (1)开门情况 上班开门、按钮开门、触板开门和门区提前开门。 (2)关门情况 下班关门、按钮开门、停站自动延时关门和强迫向上(向下) 启动关门。