当前位置:文档之家› 混凝土的强度裂缝及刚度理论

混凝土的强度裂缝及刚度理论

坏和片状劈裂。斜剪破坏和挤压流动属此特例,侧向压应力 将劈裂裂缝压实,不明显表露。 、
§7.1.2 混凝土破坏准则
2、混凝土破坏包络面的特点与表达
在以主应力
为轴的主应力空间中,取拉
应力为正,压应力为负,将 实验中获得的混凝土多轴强
度数据(
)标
在其中,相邻各点以光滑曲 面相连,就可得到一个混凝
土的破坏包络面:
§7.1.2 混凝土破坏准则
2、混凝土破坏包络面的特点与表达
在破坏包络面上可找到一些反映特殊应力状态的点。
混凝土单轴抗压、抗拉强度
混凝土双轴等压、等拉强度( (
和 各有3个点,分别位于各主轴上;
)和
)位于坐标平面内的两个坐标轴的等分
线上,同样在3个坐标平面内各有一点; 混凝土三轴等拉强度( 落在静水压力轴的正方向上。 )只有一点,

值较大的双
斜剪破坏 只发生在三轴受压(C/C/C)应力状态,且
挤压流动 只发生在三轴受压应力状态(C/C/C),且
和 值较大。
§7.1.2 混凝土破坏准则
1、混凝土破坏形态
混凝土的5种典型的破坏形态,主要是从试件破坏后
的表面宏观现象加以区分和命定的。
如果从混凝土受力破坏的机理和本质出发,即考虑引
抗压强度相等,三轴抗压(C/C/C)强度与
土多轴强度的试验规律大相径庭。
无关等,都与混凝
§7.1.2 混凝土破坏准则
3、古典强度理论——统计平均剪应力理论(Von Mises,
1913)
当材料的统计平均剪应力或八面体剪应力达到一极限值 时
发生屈服,其表达式为:
这一破坏面是以静水压力轴为中心的圆柱面。它最适合于软钢 类塑性材料,在塑性力学中应用最广。
高等桥梁结构理论
第七章 混凝土的 强度、裂缝及刚度理论
§7.1.2 混凝土破坏准则
§7.1.2 混凝土破坏准则
1、混凝土破坏形态
对典型破坏形态:
拉断 发生这类破坏的应力状态,除了单轴、双轴和三轴受拉(T,
T/T,T/T/T),还有主拉应力较大( (T/C,T/C/C,T/T/C)等。 )的双轴和三轴拉∕压
§7.1.2 混凝土破坏准则
3、古典强度理论——最大拉应变理论(Mariotto,1682)
当材料某主方向的最大拉应变达到一极限值 表达式为: 或 时发生破坏。
破坏面为以静水压力轴为中心的角锥。 这一理论可适用于混凝土双轴和三轴拉/压(T/C,T/C/C, T/T/C)的部分应力状态。但是在多轴受拉(T/T,T/T/T)应力状 态,就导出强度提高 的错误结论。
破坏包络面的交线定义为
拉、压子午线。破坏包络 面的三维立体图既不易绘
制,更不便于分析和应用,
一般改为用偏平面包络线 和拉、压子午线来表示。
§7.1.2 混凝土破坏准则
2、混凝土破坏包络面的特点与表达
如果将图形坐标原点逆时针方向旋转 ,得到静水压力轴
为横坐标,偏应力
为纵坐标的拉、压子午线。于是,空间破坏曲
面改为由子午面和偏平面上的包络线表示。 破坏面上的任一点的坐标 3个参数(圆柱坐标系)表示。 改为( )
§7.1.2 混凝土破坏准则
2、混凝土破坏包络面的特点与表达
平面
§7.1.2 混凝土破坏准则
3、古典强度理论简介
混凝土的破坏准则是在实验的基础上,考虑混凝土的特点而建 立起来的。为了便于对混凝土强度理论的理解,先对古典强度理 论作一回顾。 古典强度理论是根据一些材料的强度试验和理论研究成果而 提出来的。它们的特点是:对于材料的破坏原因有明确的理论 (物理)观点;对一些特定的材料,如金属、岩土等有试验验证; 破坏包络面的几何形状简单、规则;计算式简明,只包含一或两 个参数,易于标定等。这些古典强度理论应用于实际工程中,在 其适用的材料强度分析时取得了较好的效果。
§7.1.2 混凝土破坏准则
2、混凝土破坏包络面的特点与表达
破坏包络面与坐标平面的
交线,即为混凝土的双轴强度
包络线。偏平面与破坏包络面 的交线为偏平面包络线;不同 静水压力下的偏平面包络线构 成一族封闭曲线:
§7.1.2 混凝土破坏准则
2、混凝土破坏包络面的特点与表达
静水压力轴和个主应力
轴(如 轴)组成的平 面称为拉压子午面,其与
起破坏的主要应力成份、破坏的过程和特点、变形的发
展规律,以及裂缝的物理特征等因素,则可以将混凝土 的破坏归结为两种基本的破坏形态,即单轴受拉和单轴
受压:
§7.1.2 混凝土破坏准则
1、混凝土破坏形态
主拉应力作用 产生横向拉断裂缝和破坏,即拉断破坏。 主压应力作用 引起纵向劈裂裂缝和破坏,包括柱状破
柱状压坏 发生这类破坏的应力状态有单轴受压,以及应力
不大的双轴和三轴受压或拉∕压(C/C,T/C,T/C/C和T/T/C)等。


§7.1.2 混凝土破坏准则
1、混凝土破坏形态
对所有混凝土多轴试验的试件进行分析,可归纳为5种典型破坏形态: 片状劈裂 发生这类破坏的应力状态是主压应力
轴(C/C)、三轴受压和拉∕压(C/C/C,T/C/C)等。
§7.1.2 混凝土破坏准则
3、古典强度理论——Mohr-Coulomb理论(1900)
材料的破坏不仅取决于最大剪应力,还受剪切面上正应力的影 响,其表达式为: 这一破坏面是以静水压力轴为中心的六角锥面,但拉、压子午 线有不同的斜角 。因而可以反映材料的抗拉强度和抗压强
§7.1.2 混凝土破坏准则
3、古典强度理论——最大剪应力理论(Tresca,1864)
当材料承受的最大剪应力达到一极限值 达式为: 时发生屈服,其表
破坏面是以静水压力轴为中心的正六角棱柱面,表面不连续、
不光滑。
这一理论适用于塑性材料,如软钢。但是,按此理论计算的结 果得:单轴抗拉和抗压的强度相等,双轴抗压(C/C)强度与单轴
§7.1.2 混凝土破坏准则
3、古典强度理论——最大拉应力理论(Rankine,1876)
当材料承受的任一方向主拉应力达到一极限值 其表达式为: 这一理论的破坏面为在主应力坐标的正方向,与坐标面平行且 相距 角锥。 适用于混凝土 的 单轴 、 双轴和三轴受拉 ( T,T/T,T/T/T)应 力状态,但不能解释双轴和三轴压/拉(T/C,T/C/C,T/T/C)应力 状态的强度降低,及多轴受压(C/C,C/C/C)应力状态的破坏。 的3个互相垂直的平面,组成以静水压力轴为中心的正直 时发生破坏。
相关主题