高三物理专题复习: 滑块—滑板模型典型例题:例1.如图所示,在粗糙水平面上静止放一长L质量为1的木板B ,一质量为1的物块A以速度s m v /0.20=滑上长木板B 的左端,物块与木板的摩擦因素μ1=0.1、木板与地面的摩擦因素为μ2=0.1,已知重力加速度为10m 2,求:(假设板的长度足够长)(1)物块A 、木板B 的加速度;(2)物块A 相对木板B 静止时A 运动的位移;(3)物块A 不滑离木板B,木板B 至少多长?考点: 本题考查牛顿第二定律及运动学规律考查:木板运动情况分析,地面对木板的摩擦力、木板的加速度计算,相对位移计算。
解析:(1)物块A 的摩擦力:N mgf A 11==μ A 的加速度:21/1s m m f a A -=-= 方向向左木板B 受到地面的摩擦力:A g m M f f N 2)(2>=+=μ地故木板B 静止,它的加速度02=a(2)物块A 的位移:m a v S 2220=-= (3)木板长度:m S L 2=≥拓展1.在例题1中,在木板的上表面贴上一层布,使得物块与木板的摩擦因素μ3=0.4,其余条件保持不变,(假设木板足够长)求:(1)物块A 与木块B 速度相同时,物块A 的速度多大?(2)通过计算,判断速度相同以后的运动情况;(3)整个运动过程,物块A与木板B相互摩擦产生的摩擦热多大?考点:牛顿第二定律、运动学、功能关系考查:木板与地的摩擦力计算、是否共速运动的判断方法、相对位移和摩擦热的计算。
解析:对于物块A:N mg f A 44==μ 1分加速度:,方向向左。
24/0.4s m g m f a A A-=-=-=μ 1分 对于木板:N g m f 2)M 2=+=(地μ 1分加速度:,方向向右。
地2A /0.2s m M f f a C =-= 1分物块A 相对木板B 静止时,有:121-t a v t a C B =解得运动时间:,s t .3/11= s m t a v v B B A /3/21=== 1分(2)假设共速后一起做运动,22/1)()(s m m M g m M a -=++-=μ 物块A的静摩擦力:A A f N ma f <==1'1分 所以假设成立,共速后一起做匀减速直线运动。
1分(3)共速前A的位移:m a v v S A A A 942202=-= 木板B的位移:m a v S B B B 9122==所以:J S S mg Q B A 34)(3=-=μ拓展2:在例题1中,若地面光滑,其他条件保持不变,求:(1)物块A 与木板B 相对静止时,A 的速度和位移多大?(2)若物块A不能滑离木板B ,木板的长度至少多大?(3)物块A 与木板B 摩擦产生的热量多大?考点: 动量守恒定律、动能定理、能量守恒定律考查:物块、木板的位移计算,木板长度的计算,相对位移与物块、木板位移的关系,优选公式列式计算。
解析:(1)A、B 动量守恒,有:v m M mv )(0+= 解得:s m m M mv v /10=+= (2)由动能定理得:对A: 20212121mv mv mgS A -=-μ 对B :02121-=-Mv mgS B μ 又: B AS L S += 解得:m L 1=(3)摩擦热:J mgL Q 11==μ拓展3:如图所示,光滑的水平面上有两块相同的长木板A 和B,长度均为0.5m,在B的中间位置有一个可以看作质点的小铁块C 三者的质量都为1与A、B 间的动摩擦因数均为0.5.现在A 以速度6m 向右运动并与B 相碰,碰撞时间极短,碰后粘在一起运动,而C 可以在B 上滑动10m2, 求: (1)A 、B 碰撞后B 的速度(2)小铁块C 最终距长木板A 左端的距离.(3)整个过程系统损失的机械能。
考点: 动量守恒定律、动能定理、能量守恒定律考查:对多物体、多过程问题的正确分析,选择合适的规律列表达式,准确书写出表达式。
解析:(1)与B碰后,速度为v 1,由动量守恒定律得0=21 ①(2分)A 、B 、C 的共同速度为v2,由动量守恒定律有0=32 ②(1分)小铁块C 做匀加速运动: ③(1分)当达到共同速度时:④ (1分)⑤(1分)对A 、B整体,, ⑥ (1分)⑦(1分)小铁块C 距长木板A 左端的距离:⑧ (1分)(3)小铁块C在长木板的相对位移:m S S S C 6.0=-=∆系统损失的机械能:J S mg mv mv E 8221212120=∆--=∆μ拓展4例5.在例题1中,若地面光滑,长木板的上表面的右端固定一根轻弹簧,弹簧的自由端在Q 点,Q 点右端表面是光滑的,Q 点到木板左端的距离 0.5 m,其余条件保持不变,求:(1)弹簧的最大弹性势能多大?(2)要使滑块既能挤压弹簧,又最终没有滑离木板,则物块与木板的动摩擦因素4μ的范围。
(滑块与弹簧的相互作用始终在弹簧的弹性限度内)考点:动量守恒定律、功能关系、能量守恒定律考查:正确理解弹性势能最大的意思,准确找出临界条件,准确书写出相应的方程。
解析:(1)A 、B 动量守恒,有:v m M mv )(0+=解得:s m m M mv v /10=+= 设最大弹性势能为,由能量守恒定律得:p E mgL v m M mv +++=1220)(2121μ 解得:J E P 5.0=(2)要使滑块A 挤压弹簧,及A 、B共速且恰好运动到Q 点时,有:10)(v m M mv +=mgL v m M mv μ++=2120)(2121 解得:2.0=μ要使滑块最终没有滑离木板B,即A 、B 共速且物块恰好运动到木板B 的最左端时,有:20)(v m M mv +=mgL v m M mv μ2)(21212120++= 解得:1.0=μ所以:2.01.0<≤μ变式训练,巩固提升:考查:对知识的迁移、应用,培养能力1.如图所示,一平板小车静止在光滑的水平地面上,车上固定着半径为0.7m的四分之一竖直光滑圆弧轨道,小车与圆弧轨道的总质量M为2,小车上表面的部分是长为1.0m的粗糙水平面,圆弧与小车上表面在B处相切.现有质量1的滑块(视为质点)以v03m的水平初速度从与车的上表面等高的固定光滑平台滑上小车,滑块恰好在B处相对小车静止,10m2.(1)求滑块与小车之间的动摩擦因数μ和此过程小车在水平面上滑行的距离s;ﻫ(2)要使滑块滑上小车后不从C 处飞出,求初速度v0应满足的条件.ﻫ2.如图所示,在光滑的水平面上停放着一辆质量M=4、高h=0.8 m的平板车Q,车的左端固定着一条轻质弹簧,弹簧自然状态时与车面不存在摩擦.半径为R=1.8 m的光滑圆轨道的底端的切线水平且与平板车的表面等高.现有一质量为m=2的物块P(可视为质点)从圆弧的顶端A处由静止释放,然后滑上车的右端.物块与车面的滑动摩擦因数为μ=0.3,能发生相互摩擦的长度L=1.5 m,g取10 m2.(1)物块滑上车时的速度为多大?(2)弹簧获得的最大弹性势能为多大?(3)物块最后能否从车的右端掉下?若能,求出其落地时与车的右端的水平距离.2.解析:(1)设物块滑上车时的速度为v1.物块从A滑至该点的过程中机械能守恒,有:=,①得:v1==6 m.(2)设弹簧获得的最大弹性势能为,此时物块与车的速度相同,设为v2.在物块与车相对运动的过程中,动量守恒,有:m+M)v2.②1=(由能量守恒定律,有:=(m+M)+μ+.③①②③联立得:=15 J.(3)设物块回到车的右端时物块的速度为v3,车的速度为v4.从A滑上车至回到车的右端的过程中,动量守恒,能量守恒,有:1=3+4.④=+ +2μ. ⑤④⑤联立得:v3=0,v4=3m(v3=4 m,v4=1 m舍去).因v4>v3,故物块最后能从车的右端掉下由h=2,及Δs=v4t-v3t,得物块落地时与车的右端的水平距离Δs=1.2m.答案:(1)6 m (2)15J (3)1.2 m11.如图所示,一条滑道由一段半径R=0.8 m的圆弧轨道和一段长为L=3.2 m的水平轨道组成,在M点处放置一质量为m 的滑块B,另一个质量也为m的滑块A从左侧最高点无初速度释放,A、B均可视为质点.已知圆弧轨道光滑,且A与B之间的碰撞无机械能损失.(g取10 m2)(1)求A滑块与B滑块碰撞后的速度′和′.(2)若A滑块与B滑块碰撞后,B滑块恰能达到N点,则段与B 滑块间的摩擦因数μ的大小为多少?11.解析:(1)设与B相碰前A的速度为,A从圆弧轨道上滑下时机械能守恒,故=①A与B相碰时,动量守恒且无机械能损失,有=′+′②=′2+′2③由①②③得,′=0,′=4 m.(2)B在碰撞后在摩擦力作用下减速运动,到达N点速度为0,由动能定理得-=0-′2④其中f=μ⑤由④⑤得μ=0.25.答案:(1)0 4 m (2)0.253、如图所示,光滑水平面的左端M 处由一弹射装置P (P 为左端固定,处于压缩状态且锁定的轻质弹簧,当A 与P 碰撞时P 立即解除锁定),右端N 处与水平传送带恰平齐且很靠近,传送带沿逆时针方向以恒定速率v=5m匀速转动,水平部分长度L =4m 。
放在水平面上的两相同小物块A 、B(均视为质点)间有一被压缩的轻质弹簧,弹性势能=4J,弹簧与A 相连接,与B 不连接,A 、B 与传送带间的动摩擦因数μ=0.2,物块质量==1。
现将A 、B 由静止开始释放,弹簧弹开,在B离开弹簧时,A未与P 碰撞,B 未滑上传送带。
取g =10m2。
求:(1)B 滑上传送带后,向右运动的最远处与N 点间的距离(2)B 从滑上传送带到返回到N 端的时间t 和这一过程中B 与传送带间因摩擦而产生的热能Q(3)B 回到水平面后压缩被弹射装置P 弹回的A上的弹簧,B与弹簧分离然后再滑上传送带。
则P 锁定时具有的弹性势能E 满足什么条件,才能使B与弹簧分离后不再与弹簧相碰。
3、【解析】(1)弹簧弹开的过程中,系统机械能守恒 = )υA 2 + )υB2由动量守恒有-=0联立以上两式解得=2m,=2mA B P M N Lv DB滑上传送带做匀减速运动,当速度减为零时,向右运动的距离最大。
由动能定理得:-μ=0-)2,解得==1m(2)物块B先向右做匀减速运动,直到速度减小到零,然后反方向做匀加速运动,回到皮带左端时速度大小仍为=2m 由动量定理:-μ=--,解得t==2sB向右匀减速运动因摩擦而产生的热能为:Q1=μ(+)B向左匀加速运动因摩擦而产生的热能为:Q2=μ(-)Q=Q1+Q2=μ=20J(3)设弹射装置P将A弹开时的速度为′,则E=)′2-)2B离开弹簧时,速度互换,B的速度′=′B与弹簧分离后不再与弹簧相碰,则B滑出平台Q端,由能量关系有)′2>μ以上三式解得E>μ-)2,代入数据解得E>6J。