当前位置:文档之家› 第七章_标准贯入试验

第七章_标准贯入试验


评定砂土的抗剪强度指标

砂土的内摩擦角与标贯击数的关系表
注:均质砂取高值,非均质砂取低值,粉砂减5º ,砂和砾石混合 土增加5º 。
此表为 Meyerhof 和 Peck 成果。
Peck 还提出了经验公式: 0.3 N 27
日本的建筑基础设计规范采用大畸的经验公式:
20N 15
此表为 美国 Gibbs 和 Holtz 成果。
评定黏性土的不排水抗剪强度 Cu
Terzaghi 和 Peck 提出用标贯击数评定性土不排水抗 剪强度的经验关系式如下:
C u (6 ~ 6.5) N
日本道路桥梁设计规范则采用下列经验关系式:
C u (6 ~ 10) N
评定土的变形参数
N CN N
10 CN 0 v
CN 3.16 H
用经上覆压力修正后的标贯击数判别砂土相对密度表
评定黏性土的稠度状态和无侧限抗压强度
黏性土的稠度状态和无侧限抗压强度与标贯击数的关系表
此表为 Terzaghi 和 peck 的结果。
黏性土的稠度状态与标贯击数的关系表
此表为 原冶金部武汉勘察公司成果。
Cv
MR Ip
Ip
D4
64
CH
图中所示为在板 头上、下面的剪 切阻力分布。
D 圆柱体侧面的抗扭矩为:M 1 DH Cv 2 2 D 3 圆柱体底面的抗扭矩为:M 2 D C H D C H 4 3 12 顶面的抗扭矩为:M 3
D 12

3
3 D1 C H
计算地基承载力 根据中国建筑科学研究院和华东电力设计院的 经验,地基容许承载力可按下式估算:
q a 2(Cu ) f h
估算地基土的灵敏度 软黏土地基的灵敏度按下式计算:
St
(C u ) f Cu0
St≤2
低灵敏度土
2<St<4 中等灵敏度土 St ≥ 4 高灵敏度土
另外,十字板剪切试验成果还可以用来检验地 基加固效果、估算单桩极限承载力以及用于估算软 土的液性指数等
4.3.4 当饱和砂土、 粉土的初步判别认为需进一步进行液化判别时, 应采用标准 贯入试验判别法判别地面下 20m 范围内土的液化;但对本规范第 4.2.1 条规定可 不进行天然地基及基础的抗震承载力验算的各类建筑,可只判别地面下 15m 范围 内土的液化。当饱和土标准贯人锤击数(未经杆长修正)小于或等于液化判别标 准贯入锤击数临界值时,应判为液化土。
岩土工程勘察
主讲教师:王小平
7.4 标准贯入试验(Standard penetration Test ,SPT) 标准贯入试验原来被归入动力触探试验一类,实 际上,它在设备规格上与前述重型圆锥动力触探试验 也具有很多相同之处,而仅仅是圆锥形探头换成了由 两个半圆筒组成的对开式管状贯入器。此外与重型圆 锥动力触探试验不同的一点在于,规定将贯入器贯入 土中所需要的锤击数(又称为标贯击数)作为分析判 断的依据。 标准贯入试验具有圆锥动力触探试验所具有的所 有优点,另外它还可以采取扰动的土样,进行颗粒分 析,因而对于土层的分层及定名更为准确可靠。

D, H 为板头的直径和高度。 D1为和十字板头接触处轴 杆的直径( D1 D) D 3 M M 1 M 2 M 3 DH Cv D C H 2 6
D 3 M M 1 M 2 M 3 DH Cv D C H 2 6 2M Cv CH Cu D 2 D H 3
对独立方形基础: f K 15 N 日本住宅公团的经验关系式如下: f K 8N
估算单桩承载力 北京市勘察院提出的预估钻孔灌注桩单桩竖向极限 承载力的计算公式为:
Pu 2.78N p Ap 3.3N s As 3.1N c Ac 181h 17.33
式中
Pu—— Ap—— As—— Ac—— Np—— Ns—— Nc——
50 N 30 S
其中△S— 50击时的实际贯入深度
5. 标准贯入试验可在钻孔全深度范围内等间距进行, 也可仅在砂土、粉土等需要试验的土层中等间 距进行,间距一般为1.0~1.2m。 6. 由于标准贯入试验锤击数 N 值的离散性往往较大, 故在利用其解决工程问题时应持慎重态度,仅仅依 据单孔标贯试验资料提供设计参数是不可信的,如 要提供定量的设计参数,应有当地经验,否 则只能提供定性的结果,供初步评定用。
由于十字板剪切试验得到的不排水抗剪强度一 般偏高,因此要经过修正才能用于工程设计,其修 正方法如下:
(Cu ) f Cu
修正系数取值
影响测试结果因素: 板头尺寸 剪应力分布 排水条件 土的各向异性 剪切速率 触变效应
1. 其他软土土 2. IL>1的土 Daccal
匀速扭转
Jackson(1969) 提出修正公式:
2M Cu 3 H D D 2
与圆柱顶底面剪应力分 布相关的系数
(3)试验设备
十字板剪切试验系统组成: ① 十字板头; ② 传力系统; ③ 加力装置; ④ 测量装置。(机械式和电测试)
室内十字板剪切仪
十字板头规格表
(1)试验目的
采取扰动土样,鉴别和描述土类,按照颗分试验结 果给土层定名。 判别饱和砂土、粉土的液化可能性。 定量估算地基土层的物理力学参数,如判定黏性土 的稠度状态、砂土相对密度及土的变形和强度的有关 参数,评定天然地基土的承载力和单桩承载力。
(2)试验原理
采用标准贯入器打入土中一定距离( 30cm )所 需落锤次数(标贯击数)来表示土阻力大小
判定软土的固结历史 根据Cu-h 曲线判定软土的固结历史: 1. 若Cu-h 曲线大致呈一通过地面原点的直线,可 判定为正常固结土; 2. 若Cu-h 直线不通过原点而与纵坐标的向上延长 轴线相交,则可判定为超固结土。
(3)试验设备
标准贯入试验系统组成: ① 贯入器; ② 穿心落锤; ③ 穿心导向触探杆。
穿心落锤 锤垫 穿心导向触探杆 贯入器
标准贯入试验设备规格及适用土类表
圆锥动力触探类型及设备规格
(4)标准贯入试验技术要求 1. 采用回转钻进,钻进过程中要防止孔底涌土。当孔 壁不稳定时,可采用泥浆或套管护壁,钻至试验标高 15cm 以上时应停止钻进,清除孔底残土后再进行贯入 试验。 2. 应采用自动脱钩的自由落锤装置并保证落锤平稳下 落,减小导向杆与锤间的摩阻力,避免锤击偏心和侧 向晃动,保持贯入器、探杆、导向杆连接后的垂直 度,锤击速率应小于每分钟30击。
在地面下 20m 深度范围内,液化判别标准贯入锤击数临界值可按下式计算: Ncr=Noβ [ln(0.6ds+1.5)-0.ldw] 3 /ρ c …………(4.3.4) 式中:Ncr——液化判别标准贯入锤击数临界值; No——液化判别标准贯入锤击数基准值,可按表 4.3.4 采用; ds——饱和土标准贯入点深度(m); dw——地下水位(m); ρ c——黏粒含量百分率,当小于 3 或为砂土时,应采用 3; β ——调整系数, 设计地震第一组取 0.80, 第二组取 0.95, 第三组取 1.05。 表 4.3.4 液化判别标准贯入锤击数基准值 No
(5)贯入击数的修正问题
杆长修正
上覆有效应力影响修正
地下水影响修正
(6)试验成果及应用
判断砂土密实度
标贯击数与砂土密实度的关系对照表
人力松绳
N1
上海市标准《岩土工程勘察规范》(DBJ08-371994)考虑了土层埋深因素产生的上覆压力影响,对 实测的标贯击数进行了上覆压力修正,并在此基础上 根据修正后的标贯击数给出了对应的砂土密实程度。 考虑土层上覆压力的修正公式如下:
注: D 1: 2
H
(4)十字板剪切试验技术要求 1. 十字板剪切试验点的布置在竖向上的间距可为1m。 2. 十字板头形状宜为矩形,径高比为1:2,板厚宜为 2~3mm。 3. 十字板头插入钻孔底(或套管底部)深度不应小于 孔径或套管直径的3~5倍。 4. 十字板插入至试验深度后,至少应静置2~3min,方 可开始试验。
取值。 表 4.3.5 液化等级与液化指数的对应关系
液化等级 液化指数 IlE 轻微 0<IlE≤6 中等 6<IlE≤18 严重 IlE>18
4.3.6
当液
7.5 十字板剪切试验 (vane shear test)
十字板剪切试验是一种在钻孔内快速测定饱和 软黏土抗剪强度的原位测试方法。自1954年由南京 水科院等单位对这项技术开始开发应用以来, 在 我国沿海地区得到广泛的应用。理论上,十字板剪 切试验测得的抗剪强度相当于室内三轴不排水剪总 应力强度。由于十字板剪切试验不需要采取土样, 可以在现场基本保持原位应力状态的情况下进行测 试,这对于难以取样的高灵敏度的黏性土来说具有 不可替代的优越性。
3. 探杆最大相对弯曲度应小于 1/1000。 4. 正式试验前, 应预先将贯入器打入土中 15cm, 然后开始记录每打入 10cm 锤击数,累计打入30cm 的锤击数为标准贯入试验锤击数 N。当锤击数已达 到 50 击,而贯入深度未达到 30cm 时,可记录 50 击 的实际贯入度,并按下式换算成相当于 30cm 贯入度 的标准贯入试验锤击数N 。并终试验:
单桩竖向极限承载力 ( kN ) 桩端的截面积 ( m2 ) 桩在砂土中的侧面积 ( m2 )
桩在黏性土中的侧面积 ( m2 )
桩端附近土层中的标贯数;
桩周砂土层标贯击数
桩周黏土层标贯击数
h——
孔底虚土的厚度 ( m )
饱和砂土、粉土的液化
标准贯人试验是判别饱和砂土、粉土液化的重要手段, 我国《建筑抗震 设计规范》(GB50011—2010)规定
国内用标贯击数确定地基土变形参数的经验公式
相关主题