当前位置:文档之家› 换热器的设计说明书

换热器的设计说明书

西安科技大学—乘风破浪团队1换热器的设计1.1 换热器概述换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有重要地位。

换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。

在三类换热器中,间壁式换热器应用最多。

换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。

由于使用条件的不同,换热设备又有各种各样的形式和结构。

换热器选型时需要考虑的因素是多方面的,主要有: ① 热负荷及流量大小; ② 流体的性质;③ 温度、压力及允许压降的范围; ④ 对清洗、维修的要求;⑤ 设备结构、材料、尺寸、重量; ⑥ 价格、使用安全性和寿命;按照换热面积的形状和结构进行分类可分为管型、板型和其它型式的换热器。

其中,管型换热器中的管壳式换热器因制造容易、生产成本低、处理量大、适应高温高压等优点,应用最为广泛。

管型换热器主要有以下几种形式:(1)固定管板式换热器:当冷热流体温差不大时,可采用固定管板的结构型式,这种换热器的特点是结构简单,制造成本低。

但由于壳程不易清洗或检修,管外物料应是比较清洁、不易结垢的。

对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。

(2)浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。

另一端管板不与壳体连接而可相对滑动,称为浮头端。

因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。

适用于冷热流体温西安科技大学—乘风破浪团队2差较大,壳程介质腐蚀性强、易结垢的情况。

(3)U 形管式换热器换:热效率高,传热面积大。

结构较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。

表1-1 换热器特点一览表西安科技大学—乘风破浪团队3在过程工业中,由于管壳式换热器具有制造容易,生产成本低,选材范围广,清洗方便,适应性强,处理量大,工作可靠,且能适应高温高压等众多优点,管西安科技大学—乘风破浪团队4壳式换热器被使用最多。

工业中使用的换热器超过90%都是管壳式换热器,在工业过程热量传递中是应用最为广泛的一种换热器。

结合上述优点和本工艺的特点,本工艺的换热器主要选用管壳式换热器。

1.2 管壳式换热器的选用1.2.1 结构参数的确定⑴管径管径越小换热器越紧凑、便宜,但压力降会增加。

为了满足允许的压降,一般选用19mm 的管子;对于物流流量较大的,采用25mm 以上的管子。

⑵管长无相变传热时,管子长则换热系数增加,对于相同的换热面积,管子长则管程数减小,使得压力降减小,每平方米传热面积比降低。

我国生产的标准钢管长度为6m ,故系列标准中管长有1.5 m ,2 m ,3 m ,6 m 和9 m 五种。

因此,一般管长取4-6m ,对大面积,无相变换热器管长可取至8~9m 。

⑶管子配布换热管在管板上的排列方式主要有正三角形、正方形和转角正三角形、转角正方形。

正三角形排列形式最为普遍,由于管距都相等,可以在同样的管板面积上排列最多的管数。

但因管外不易清洗,其适用场合受到限制,主要适用于壳程介质污垢少,且不需要进行机械清洗的场合。

而采用正方形和转角正方形排列的管束,能够使管间小桥形成一条直线通道,便于管外机械清洗。

⑷管心距管心距小设备紧凑,但将引起管板增厚、清洁不便、壳程压降增大。

故一般选用范围为 1.25~1.5d (d 为管外径)。

表1-2 换热管管心距西安科技大学—乘风破浪团队5⑸管程数管程数增加,管内流速增加,传热系数增加。

管程数一般有1、2、4、6、8、10、12等七种。

但管程数不能分得太多,以免压力降过大,且隔板要占用相当大的布管面积。

⑹折流板折流板可以改变壳程流体的方向,使其垂直于管束流动,提高流速,从而增加流体流动的湍流程度,获得较好的传热效果。

折流板型式可分为圆缺形(弓形)折流板、盘环形折流板、孔式折流板和折流圈。

表1-3 折流板间距常用数值1.3 换热器详细设计本工艺共有41台换热设备(换热器、再沸器、冷凝器、预热器),这里我们西安科技大学—乘风破浪团队6以浮头式换热器(E0602)详细设计为例。

热物流经该换热器换热温度降至目标温度,冷却物流为循环冷却水。

由Aspen 软件得到冷热工艺物流数据:表1-4 工艺操作参数初步选择换热器的形式后,根据任务要求利用Aspen Exchanger Design &Rating V7.2进行模拟计算,模拟出来的换热器工艺参数如图1-1所示:西安科技大学—乘风破浪团队7图1-1 换热器工艺参数⑴结构设计西安科技大学—乘风破浪团队8利用Aspen Exchanger Design &Rating V7.2软件也可以对换热器进行结构设计,模拟出来的结果如下:①换热管设计图 1-2 换热管基本参数图 1-3 换热管排列方式换热管为平滑管,外径19mm ,壁厚为2mm ,管间距为25mm ,管长 5850mm 。

换热管根数514根。

管子排列方式为正三角形排列。

②折流板和管口设计折流板的设置主要是为了提高壳程的流速,增加扰动,改善传热。

这里选择单弓形折流板,并且圆缺方向的高度为壳体公称直径的0.15~0.45,折流板间距西安科技大学—乘风破浪团队9一般不小于圆筒内径的1/5。

折流板的数目及厚度等基本参数见图1-4 所示图1-4 折流板基本参数折流板数目为6,折流板型式为单弓形,切割率为39.15%。

折流板朝向为水平,与进出口间隔(第一块与进口或最后一块与出口端面的距离)为466.48mm , 两块板间隔为525.00mm 。

图1-5 管口基本参数管程进、出口管口各有一个。

其中,管程进口管口外径为168.28mm ,内径154.05mm ;管程出口管口外径168.28mm ,内径154.05mm 。

壳程进、出口管口亦各有一个,壳程进口管口外径为323.85mm ,内径304.8mm ;壳程出口管口外径273.05mm ,内径254.51mm 。

③管束西安科技大学—乘风破浪团队10图1-6 管束基本参数如图为管束信息,主要对管束布置、布置限定、定位杆拉杆和管束布置图 进行详细设置。

图 1-7 换热器结构尺寸根据《JB/T4715-1992固定管板式换热器形式与基本参数》和《GB151-1999西安科技大学—乘风破浪团队11管壳式换热器》对模拟的数据进行圆整,并考虑到热损失等,换热面积有余量, 选定换热器的基本参数如下:表1-5 换热器基本参数⑵换热器的机械设计及校核 ①选材由于热流体和冷却水温度都不是太高,冷、热流体腐蚀性不大,故壳体材料 选用Q235-B ,管子材料选用Q235-B 无缝钢管。

②管板的选择管板用来固定换热管并起着分隔管程和壳程的作用,根据选定的换热器公称直径及操作压力查表可得管板数据,这里选用其默认的管板类型为标准单管板。

表1-6 管板结构数据西安科技大学—乘风破浪团队12③管子与管板的连接因为操作压力小于4Mpa ,且温度低于300℃,所以管子与管板的连接采用 胀接。

④管板与壳体的连接管板与壳体的连接采用焊接,,该结构在管板上开槽,壳体嵌入后焊接。

壳体对中容易,适用于壳体压力不太高的场合。

⑤换热器的校核表 1-7 固定管板式换热器设计计算西安科技大学—乘风破浪团队13表 1-8 前端管箱筒体计算西安科技大学—乘风破浪团队14表 1-9 前端管箱封头计算西安科技大学—乘风破浪团队15表 1-10 后端管箱筒体计算西安科技大学—乘风破浪团队16西安科技大学—乘风破浪团队17表 1-11 后端管箱封头计算西安科技大学—乘风破浪团队18表 1-12 筒体计算西安科技大学—乘风破浪团队19表1-13 筒体法兰计算西安科技大学—乘风破浪团队20西安科技大学—乘风破浪团队21西安科技大学—乘风破浪团队22西安科技大学—乘风破浪团队23表1-14后端筒体法兰计算西安科技大学—乘风破浪团队24西安科技大学—乘风破浪团队25西安科技大学—乘风破浪团队26表1-15前端管箱法兰计算西安科技大学—乘风破浪团队27西安科技大学—乘风破浪团队28西安科技大学—乘风破浪团队29西安科技大学—乘风破浪团队30表1-16后端管箱法兰计算西安科技大学—乘风破浪团队31西安科技大学—乘风破浪团队32西安科技大学—乘风破浪团队33表1-17开孔补强计算西安科技大学—乘风破浪团队34西安科技大学—乘风破浪团队35⑶选型结果经过修正校核,最终选定换热器型号:BES-800-0.4-189.8-4.5/19-4Ⅱ,其各自代表意义为:封头管箱,800—换热器公称直径(mm ),0.4—管程、壳程设计压力(MPa ),189.8—换热面积(m2),4.5—换热管长(m ),19—换热管外径(mm ),4—四管程,1-单壳程,Ⅱ—碳钢较高级冷拔钢管。

其它换热器采用同样的方法计算选型。

选型结果详见附录:设备一览表。

1.4 选型依据《换热器设计手册》钱颂文编 《管壳式换热器》GB 151-1999《热交换器设计手册》下册,尾花英朗[日] 《腐蚀数据与选材手册》左景伊、左禹编《斧头式换热器和冷凝器型式与基本参数》JB/T 4714-92 《固定管板式换热器与基本参数》JB/T 4715-92 《压力容器》GB 150.1-2011《化工设备机械基础》俞建良、王立业、刁玉玮编著。

相关主题