当前位置:文档之家› 机械设计基础总复习资料.

机械设计基础总复习资料.

2、自由度计算公式
活动构件数 构件总自由度 低副约束数
n
3×n
2 × PL
1 × Ph
计算公式: F=3n-2PL —Ph
要求:记住上述公式,并能熟练应用。
机构具有确定运动的条件是:
(1)机构自由度 F>0, (2)机构自由度 F等于原动件数。
六、计算平面机构自由度的注意事项
1、复合铰链 2、局部自由度 3、虚约束
平面机构的虚约束常出现于下列情况:
(1)两构件构成多个移动副且导路互相平行 (2)两构件组成若干个轴线互相重合的转动副,
只有一个转动副起作用。
(3)机构中传递运动不起独立作用的对称部分存 在虚约束。
第二章 平面连杆机构
重点、难点: 四杆机构的急回性、压力角、传动角 曲柄存在的条件 四杆机构的设计P32(作业)
凸轮机构的压力角:
接触点法线与从 动件上作用点速度方 向所夹的锐角。

3
F
v
2
B 1
eHale Waihona Puke OC Pn力 F 分解为沿从动件运动 方向的有用分力 F' 和使从动件 紧压导路的有害分力 F" 。
F"= F' tg α
上式表明:
1、 F'一定时, 压力角α越大 , 1 有害分力 F"越大,机构的效 率越低。
极位夹角θ越大,K值越大,急回运动的性质 越显著。
极位夹角计算公式:
θ=180°(K-1)/(K+1)
连杆机构输出件具有急回特性的条件
1)原动件等角速整周转动; 2)输出件具有正、反行程的往复运动; 3)极位夹角θ>0。
四、压力角和传动角
(1)机构压力角: 在不计构件的重力、惯性力和运动副中的摩擦阻 力的条件下:机构中驱使输出件运动的力与输出件 上受力点的速度方向间所夹的锐角,称为机构压 力角,通常用α表示。
1)取最短杆为机架时,机架上有两个整转副,该 机构为双曲柄机构。
2)取最短杆的邻边为机架时,机架上只有一个整 转副,该机构为曲柄摇杆机构。
3)取最短杆的对边为机架时,机架上没有整转副, 该机构为双摇杆机构。
(2) 若不满足杆长和条件:
该机构只能是双摇杆机构。
注意: 铰链四杆机构必须满足四构件组成的
一、铰链四杆机构有整转副的条件
1. 整转副: 两构件能相对转动360°的转动副。 2. 整转副存在的条件: 杆长和条件。
(1)整转副存在的条件:最短杆与最长杆长度之和小于或等 于其它两杆长度之和。(杆长和条件) (2)整转副是由最短杆与其邻边组成。
二、铰链四杆机构类型的判断条件
(1)在满足杆长和的条件下:
四、直动从动件盘形凸轮轮廓设计
凸轮设计的基本原理 采用的是“反转法”,即 凸轮轮廓设计中,是认为 凸轮静止不动,从动件相 对于凸轮轴心做反方向 (反转)运动,并令从动 件相对其导路按给定的运 动规律运动。
二、机械设计的基本要求
使用功能要求 经济性要求 劳动保护要求 可靠性要求 其它专用要求
三、机器设计的一般过程
市场调 研
可行性 研究
设 计 任 务 书
方案 设计
技术 设计
试制 试验

装配图、 样

零件图、 机

技术文








小批生 投 产试销 产
考核

工艺

性收

集用

户意

第一章 平面机构的自由度
绪论
重点难点: 机械的组成、 机械设计的基本要求 机械设计的一般过程
一、机械的组成:
1、机械: 机器 +机构 + 工具
机器的组成:
润滑、显示、照明等辅助系统
原动机部分
传感器
传动部分
传感器
执行部分
传感器
控制系统
2、机构(P1 )
能实现预期的机械运动的构件系统(包括机 架)称为机构。
注意:
机构和机器的区别( P2 ) 构件与零件的区别( P2 )

3
F F' v
2
F"
B
e
OC P
S2
2、 自锁:当α增大到一定程度,
n
使有害分力F"在导路中所引起
的摩擦阻力大于F′时, 无论凸轮加给从动件的作用力
有多大 ,从动件都不能运动,这种现象称为自锁。
三、压力角与凸轮机构尺寸的关系(P45)
直动从动件盘形凸轮压力角为:
ds e

tgα
s
公式说明:
第三章 凸轮机构
重点、难点: 反转法原理 凸轮机构的图解法设计 凸轮机构基本参数的关系
一、从动件常用运动规律
1、匀速运动规律(推程段) 2、等加速等减速运动规律 3、简谐运动 4、正弦加速度运动(摆线运动) 5、组合运动
二、压力角与作用力的关系
S2
压力角:
从动件上的驱动力与 该力作用点绝对速度之间 所夹的锐角。
封闭多边形条件:最长杆的杆长<其余三杆 长度之和。
三、急回特性
行程速度变化系数:(或行程速比系数)K表示:
K = v2/v1 =(C2C1/t2)/ (C1C2/t1 ) = t1/t2 = 1/2 =(180°+θ)/(180°-θ)
式中θ为摇杆处于两极限位置时,对应的曲柄所 夹的锐角,称为极位夹角( C2AC1)。
1
1
1
1
2
2
1 2 1
1 2
1
一、构件的表示与分类
1、构件的表示
杆、轴类构件
固定构件
同一构件
两运动副构件 三运动副构件
二、机构运动简图的绘制步骤 1、分析机构 2、适当选择投影面 3、选择适当的比例尺,绘制机构运动简图 4、标出原动件,给各构件标上代号
五、平面机构的自由度
定义: 机构相对于机架所具有的独立运动的数目。
重点、难点: 运动副的概念 平面机构运动简图的绘制 平面机构自由度的计算
平面机构自由度的计算注意事项: 复合铰链、局部自由度、虚约束的概念
运动副 名称
常用运动副的符号 运动副符号
两运动构件构成的运动副 两构件之一为固定时的运动副
2 转
2

平副 1
1



2
副移

1

2
1
2
2
1
1
2
1 2 1
22
22
rb2 e2
在其它条件不变的情况 1
下,基圆半径越小,压力角
越大,机构越紧凑。

3
F F" v
2
F'
B
e
OC P
n
S
为了减小推程压力角,应将 从动件导路向推程相对速度瞬 心的同侧偏置,即e为负值。但 同时会产生使回程压力角增大
的现象,所以e不能过大。

3
F F" v
2
F'
B
1
e
OC P
n
S2
传动角:压力角α的余角。
五、死点位置:(主动件条件) 在不计构件的重力、惯性力和运动副中的摩擦阻
力的条件下: 当摇杆为主动件,连杆和曲柄共线时,过铰链中
心A的力,对A点不产生力矩,不能使曲柄转动,机构 的这种位置称为死点位置 。
避免措施:
两组机构错开排列,如火车轮机构;
靠飞轮的惯性(如内燃机、缝纫机等)。
相关主题