当前位置:
文档之家› 锂空气电池Thelithium-airbattery_BrunoScrosati
锂空气电池Thelithium-airbattery_BrunoScrosati
Discharge curve
Courtesy of Dr. Mark Salomon, Max Power Inc. USA
The lithium‐air battery (aqueous electrolyte)
Protected anode design
Remaining issues: mechanical stability of the protecting film, high interfacial resistance, solubility of the reaction products...
18
Li/Air Batteries: Performance & Capacity
charge: (Li2O2)solid 0.5 O2 + 2 Li+ + 2 e‐
Erev 2.96 V
discharge: 0.5 O2 + 2 Li+ + 2 e‐ (Li2O2)solid
A. Débart, A.J. Paterson, J. Bao, P.G. Bruce; Angew. Chem. Int. Ed. 47 (2008) 4521
Intercalation materials
Carbon anodes
High capacity cathodes
Super‐ Battery <200kg/500km Li/S, Li/O2
"0V" High capacity
250
500
750
1000 1250 1500 1750
Capacity / Ah kg‐1 Courtesy of Dr. S.Passerini, Muenster University, Germany
Super‐ Battery
< 200kg
200 Wh/kg*
Estimated limit of Lithium‐Ion Technology
170 Wh/kg*
140 Wh/kg*
Li‐ion Batteries
Present 2012 2017
Year
Courtesy of Dr. Stefano Passerini, Munster University, Germany
Courtesy of Prof O.Yamamoto, Mie University, Japan
15
The lithium-air battery
Fuminori Mizuno, Scalable Energy Storage Beyond Lithium Battery: Materials Perspectives Symp., ONRL, Oct 2010
The “holy grail of batteries” !
BUT : still a long way to go, many issues to be addressed Sensitive to humidity, very low rate discharge, choice of catalyst, reactivity of the lithium metal electrode, …….
catalysts may affect also capacity via product distribution (LiO2, Li2O2, Li2O)
The lithium-air battery
ORR process in a lithium air cells
Courtesy of Dr. Y. Shao-Horn and H.A. Gasteiger, MIT, Cambridge, USA
Issues: high voltage hysteresis loop, limited cycle life, stability of the organic electrolytes, reactivity of the lithium metal anode…..
Courtesy of Prof O.Yamamoto, Mie University, Japan
The lithium‐air battery (organic electrolyte)
Unprotected electrode design
Lithium-air battery with unprotected lithium metal anode (non aqueous electrolyte) Li + ½ O2 ½ Li2O2 Theor. energy density (oxygen only) : 11,420 Wh/kg
The lithium-air battery Potentiodynamic Cycling (PCGA)
Lithium superoxide formation Lithium peroxide formation Lithium oxide formation
Reaction mechanism
2
The lithium-air battery Target setting value
Difficult by 材料的に困難 material
Voltage (V) 電池作動電 圧 (V)
500Wh/kg 以上
over
4V, 150Ah/kg
Technically 技術的に可能 possible
A.Debart, A.J. Peterson, J.Bao, P.G.Bruce, Angewandte Chemie, 120 (2008) 4597
17
The lithium-air battery (organic electrolyte)
Usign Organic electrolytes
8
The lithium-air battery Potential store 5-10 times more energy than today best systems Two battery versions under investigation
Lithium-air battery with protected lithium metal anode and/or protected cathode (aqueous electrolyte) 2Li + ½ O2 + H2O 2LiOH Theor. energy density : 5,800 Wh/kg Lithium-air battery with unprotected lithium metal anode (non aqueous electrolyte) Li + ½ O2 ½ Li2O2 Theor. energy density : 11,420 Wh/kg
Present Lithium Ion technology (C-LiCoO2): Theor energy density: 420 Wh/kg
9
The lithium-air battery
Protected anode design (aqueous electrolyte)
Mainly primary
higher capacity cathodes needed:
Li/air
J.‐M. Tarascon & M. Armand, Nature 414 (2001) 359
projected specific energy for Li‐Air cathodes ?
The lithium-air battery
Capacity (Ah / kg or Ah / L)L) 電 気容量(Ah/ kg または、Ah/
The lithium-air battery
Revolutionary Technology‐ Change
>500 Wh/kg
Electric Vehicle - The energy issue
ORR process in a fuel cell
Courtesy of Dr. Y. Shao-Horn and H.A. Gasteiger, MIT, Cambridge, USA
The lithium-air battery
Protected anode design (aqueous electrolyte)
The lithium-air battery
The lithium-air battery
Developing companies: IBM, Excellatron,Liox Power, Lithion Yardney , Poly Plus, Rayovac, Max Power, … and many more Research: AIST Japan, St.Andrews, UK: Michigan State University, USA; Mie University, Japan; Brookhaven Natl. Laboratory, USA; Argonne Laboratories,USA; University of Dayton Research Institute, USA; University Picardie Amiens, France; Technical University Munich, Germany; Muenster University, Germany; Technion, Israel,….
Li‐Ion Batteries for Vehicles: Challenges
specific energy [Wh/kg] largely limited by intercalation cathode durability/safety needs further lower Wh/kg: ‐ low depth of charge/discharge ‐ low‐potential cathodes (LiFePO4) ‐ high‐potential anodes (Ti‐oxides)