电解电容器的耐压测试方法电解电容器耐压测试及应用电容的耐压,表示电容在一定条件下连续使用所能承受的电压。
如果加在电容上的工作电压超过额定电压,电容内部的绝缘介质就有可能被击穿,造成极片间短路或严重漏电。
因此,电容的工作电压不能大于其额定耐压,以保证电路可靠工作。
对于电解电容器,漏电流是性能指标中重要的一项。
电解电容的漏电流与电压的关系密切,漏电流随工作电压的增高而增大。
当工作电压接近阳极的赋能电压时,漏电流会急剧上升。
通过测试电解电容的漏电电流,可以推算出它的极限耐压和额定耐压,对于电路中电容耐压的取值,有直接的参考意义。
根据这个原理,笔者设计并制作了~款电容耐压测试仪,其线路简单、成本低廉、制作容易,较好地解决了业余条件下电容耐压测试的问题。
变压器T1和T2型号相同,背靠背对接,提供高低压两组电源,并起到隔离作用。
低压的经整流滤波后,由R1、DWl、Q1、Ral~Ral 1组成电流可调的恒流源。
高压的经整流滤波后由Rbl~RblO、DW2分压,Q2输出可调的直流电压。
使用时选择合适的电压Uc和电流Jc,将被测电容接到Cxa、Cxb两点上,此时会看到电压表指针缓慢偏转,达到一定的位置后静止,指针所指的电压即为该电容在漏电电流为lc时所承受的耐压。
波段开关K3、K4(各单挡11位)分别是测试电压和电流(即漏电流)选择开关,其测试量程如表1所示。
表2为测试电路中的元件清单。
一、测试电路的使用方法1.将测试电压调到比电容额定电压高一些的挡位。
如测试35V的申容。
可将挡位放到64V,测试50v的电容,可将挡位放到64M或96V.挡位高一些对测试结果影响不大,只是挡位越高,三极管Q1的功耗相应会大一些。
2.选择合适的测试电流。
测试电流应根据电容容量来选择,容量越大测试电流也越大。
对于4700μF以上的电容,可选择大于10mA的测试电流;对于1000~4700μF的电,容,可选择5mA左右的测试电流:对于10μF以下的电容,可选择0.2~1mA的测试电流。
3.红色鳄鱼夹接电容正极,黑色鳄鱼夹接电容负极。
接好后看到电压表指针先匀速缓慢偏转。
正常情况下偏转位置应超过额定电压,当达到某一值时其指针偏转变慢,并且越来越慢,最终静止下来,此时电容的漏电流等于Q1集电极的恒流电流,电压表所指示的电压,为此电容在漏电电流为Ic时所承受的耐压,可粗略认为是该电容的极限耐压。
4.测试完毕后将开关K2闭合,待电容放电后取下。
表3是利用附图的测试电路测量的部分电解电容器的产品实例。
二、测试经验总结1.电容容量越大,测试电流(漏电流)也应相应变大。
国产的铝电解电容器,在额定电压6.3~450V,标称容量10~680μF时,漏电流可按下列公式计算:I≤(KxCxU)/1000公式中:I为漏电流(mA);K为系数(20℃±5℃时,K=O.03);U为额定工作电压(V);C为标称容量(μF);2.由于电解电容器只能单向工作,如将电解电容正负端接反测试,在5mA电流下测试其电压会极低,大约只有4V左右。
3.长期不用的电解电容器,由于氧化膜的分解,容量、耐压都有一定的衰减,在第一次使用时,应先加低压(1/2额定耐压)老化一段时间(等效电解电容器的赋能)。
4.同样的容量和耐压的电解电容器,其体积较大、分量较重的一般耐压性能更好些;同样的容量和耐压的电解电容器,其相同的测试电流,电压指针偏转快的,漏电流较小。
5.正品电解电容极限耐压一般为其额定电压的120%左右。
6.当工作电压高于额定电压时,电容就较容易击穿。
因此选用电解电容时,应使额定电压高于实际工作电压,并要预留一定的余量,以应付电压的波动。
一般情况下,额定电压应高于实际工作电压的10%~20%,对于工作电压稳定性较差的电路,可酌情预留更大的余量。
7.使用本电路测试电解电容器,不会造成电容的损坏。
三、测试电路的改进1.由于没有购买到合适的电压表头,DC250V以上挡不能指示。
如果能够换成DC320v表头就比较理想。
表头量程也不宜太大,否则会降低分辨率,用这样的表头去测试低耐压电容时,会造成读数偏差太大。
2.为了取得更准确的测试电压,可将Rbl~Rbl0分压电阻换成相应稳压值的稳压管(加限流电阻)或多圈精密可调电阻。
3.V1若换成数字式电压表,电压读数将更加直观、精确。
不过需另外加装一组DC5v浮动电源。
4.恒流电阻Ral~Rall,若用一只47∞电阻串联一只4.7kΩ多圈精密电位器代替后,其恒流值(1.1~12mA)可连续可调。
电容器的转换速率电容器的转换速率受以下因素影响。
下面以音响中常用的两类电容--电解电容和无极性电容分别予以介绍。
1.电解电容(1)电容量电容量大,相对来说转换速率较低。
一些耦合、退耦用的电解电容,以小容量多只并联,或并联小容量无极性电容的方法来提高中高频的转换速率已属常见。
(2)电极与电解质电解电容电极上的活性物质以及电解质也会影响其转换速率。
(3)导电性能电解质的导电能力越强,转换速率越高。
优秀电容器的转换速率都比较高。
从其正切损耗值就可以看出,损耗越大,表示它越跟不上信号的高速变化。
由于活性物质频频的极性转换,其损耗能量引起发热,还会影响寿命,一些质量差的电解电容还会发热"爆炸"。
2.无极性电容(1)分布电感采用叠片方式的电容比采用卷绕方式电容的电感小,所以采用叠片方式电容器的转换速率高,高频响应好,但卷绕方式生产过程容易,故市面上的电容以卷绕方式多见。
一些质量较好的电容采用多个小容量电容并联以减少分布电感。
(2)导体的电阻现在有些无极电容为减少体积及降低成本,往往在介质上镀上一层金属作电极,这层金属材料和厚度都会影响导电。
因为电容是靠充放电工作去"传递"信号,所以导体的电阻越小,电流越畅顺,瞬态反应就越好,导体电阻引起的相移也越小,传递信号的畸变也越小。
近年采用无极电容做胆前级的电源滤波电容也越来越多见。
变频器过电压的原因及其对策变频器用铝电解电容器:WH系列WH系列产品目录书变频器在调试与使用过程中经常会遇到各种各样的问题,其中过电压现象最为常见。
过电压产生后,变频器为了防止内部电路损坏,其过电压保护功能将动作,使变频器停止运行,导致设备无法正常工作。
因此必须采取措施消除过电压,防止故障的发生。
由于变频器与电机的应用场合不同,产生过电压的原因也不相同,所以应根据具体情况采取相应的对策。
过电压的产生与再生制动所谓变频器的过电压,是指由于种种原因造成的变频器电压超过额定电压,集中表现在变频器直流母线的直流电压上。
正常工作时,变频器直流部电压为三相全波整流后的平均值。
若以380V线电压计算,则平均直流电压Ud=1.35U线=513V。
在过电压发生时,直流母线上的储能电容将被充电,当电压上升至700V左右时,(因机型而异)变频器过电压保护动作。
造成过电压的原因主要有两种:电源|稳压器过电压和再生过电压。
电源过电压是指因电源电压过高而使直流母线电压超过额定值。
而现在大部分变频器的输入电压最高可达460V,因此,电源引起的过电压极为少见。
本文主要讨论的问题是再生过电压。
产生再生过电压主要有以下原因:当大GD2(飞轮力矩)负载减速时变频器减速时间设定过短;电机受外力影响(风机、牵伸机)或位能负载(电梯、起重机)下放。
由于这些原因,使电机实际转速高于变频器的指令转速,也就是说,电机转子转速超过了同步转速,这时电机的转差率为负,转子绕组切割旋转磁场的方向与电动机状态时相反,其产生的电磁转矩为阻碍旋转方向的制动转矩。
所以电动机实际上处于发电状态,负载的动能被“再生”成为电能。
再生能量经逆变部续流二极管对变频器直流储能电容器充电,使直流母线电压上升,这就是再生过电压。
因再生过电压的过程中产生的转矩与原转矩相反,为制动转矩,因此再生过电压的过程也就是再生制动的过程。
换句话说,消除了再生能量,也就提高了制动转矩。
如果再生能量不大,因变频器与电机本身具有20%的再生制动能力,这部分电能将被变频器及电机消耗掉。
若这部分能量超过了变频器与电机的消耗能力,直流回路的电容将被过充电,变频器的过电压保护功能动作,使运行停止。
为避免这种情况的发生,必须将这部分能量及时的处理掉,同时也提高了制动转矩,这就是再生制动的目的。
过电压的防止措施由于过电压产生的原因不同,因而采取的对策也不相同。
对于在停车过程中产生的过电压现象,如果对停车时间或位置无特殊要求,那么可以采用延长变频器减速时间或自由停车的方法来解决。
所谓自由停车即变频器将主开关器件断开,让电机自由滑行停止。
如果对停车时间或停车位置有一定的要求,那么可以采用直流制动(DC制动)功能。
直流制动功能是将电机减速到一定频率后,在电机定子绕组中通入直流电,形成一个静止的磁场。
电机转子绕组切割这个磁场而产生一个制动转矩,使负载的动能变成电能以热量的形式消耗于电机转子回路中,因此这种制动又称作能耗制动。
在直流制动的过程中实际上包含了再生制动与能耗制动两个过程。
这种制动方法效率仅为再生制动的30-60%,制动转矩较小。
由于将能量消耗于电机中会使电机过热,所以制动时间不宜过长。
而且直流制动开始频率,制动时间及制动电压的大小均为人工设定,不能根据再生电压的高低自动调节,因而直流制动不能用于正常运行中产生的过电压,只能用于停车时的制动。
对于减速(从高速转为低速,但不停车)时因负载的GD2(飞轮转矩)过大而产生的过电压,可以采取适当延长减速时间的方法来解决。
其实这种方法也是利用再生制动原理,延长减速时间只是控制负载的再生电压对变频器的充电速度,使变频器本身的20%的再生制动能力得到合理利用而已。
至于那些由于外力的作用(包括位能下放)而使电机处于再生状态的负载,因其正常运行于制动状态,再生能量过高无法由变频器本身消耗掉,因此不可能采用直流制动或延长减速时间的方法。
再生制动与直流制动相比,具有较高的制动转矩,而且制动转矩的大小可以跟据负载所需的制动力矩(即再生能量的高低)由变频器的制动单元自动控制。
因此再生制动最适用于在正常工作过程中为负载提供制动转矩。
再生制动的方法:1.能量消耗型:这种方法是在变频器直流回路中并联一个制动电阻,通过检测直流母线电压来控制一个功率管的通断。
在直流母线电压上升至700V左右时,功率管导通,将再生能量通入电阻,以热能的形式消耗掉,从而防止直流电压的上升。
由于再生能量没能得到利用,因此属于能量消耗型。
同为能量消耗型,它与直流制动的不同点是将能量消耗于电机之外的制动电阻上,电机不会过热,因而可以较频繁的工作。
2.并联直流母线吸收型:适用于多电机传动系统(如牵伸机),在这个系统中,每台电机均需一台变频器,多台变频器共用一个网侧变流器,所有的逆变部并接在一条共用直流母线上。