当前位置:文档之家› 网络层常用协议

网络层常用协议

网络层常用协议一.SDH1.SDH简介SDH(Synchronous Digital Hierarchy,同步数字系列)是一种将复接、线路传输及交换功能融为一体、并由统一网管系统操作的综合信息传送网络,是美国贝尔通信技术研究所提出来的同步光网络(SONET)。

CCITT(现ITU-T)于1988年接受了SONET 概念并重新命名为SDH。

它可实现网络有效管理、实时业务监控、动态网络维护、不同厂商设备间的互通等多项功能,能大大提高网络资源利用率、降低管理及维护费用、实现灵活可靠和高效的网络运行与维护,因此是当今世界信息领域在传输技术方面的发展和应用的热点,受到人们的广泛重视。

SDH就是在这种背景下发展起来的。

在各种宽带光纤接入网技术中,采用了SDH技术的接入网系统是应用最普遍的。

SDH的诞生解决了由于入户媒质的带宽限制而跟不上骨干网和用户业务需求的发展,而产生了用户与核心网之间的接入"瓶颈"的问题,同时提高了传输网上大量带宽的利用率。

2.SDH的帧结构SDH采用的信息结构等级称为同步传送模块STM-N,基本的模块为STM-1,四个STM-1同步复用构成STM-4,16个STM-1或四个 STM-4同步复用构成STM-16;SDH采用块状的帧结构来承载信息,每帧由纵向9行和横向 270×N 列字节组成,每个字节含8bit,整个帧结构分成段开销(Section OverHead,SOH)区、STM-N净负荷区和管理单元指针(AU PTR)区三个区域,其中段开销区主要用于网络的运行、管理、维护及指配以保证信息能够正常灵活地传送,它又分为再生段开销(Rege nerator Section OverHead,RSOH)和复用段开销(Multiplex Section OverHead, MSOH);净负荷区用于存放真正用于信息业务的比特和少量的用于通道维护管理的通道开销字节;管理单元指针用来指示净负荷区内的信息首字节在STM-N帧内的准确位置以便接收时能正确分离净负荷。

1)信息净负荷(payload)是在STM-N帧结构中存放将由STM-N传送的各种用户信息码块的地方。

2)段开销(SOH)是为了保证信息净负荷正常传送所必须附加的网络运行、管理和维护(OAM)字节。

3)管理单元指针(AU-PTR)管理单元指针位于STM-N帧中第4行的9×N列,共9×N个字节。

SDH能够从高速信号中直接分/插出低速支路信号(例如2Mbit/s),这是因为低速支路信号在高速SDH信号帧中的位置有预见性,也就是有规律性。

预见性的实现就在于SDH帧结构中指针开销字节功能。

AU-PTR是用来指示信息净负荷的第一个字节在STM-N帧内的准确位置的指示符,以便接收端能根据这个位置指示符的值(指针值)准确分离信息净负荷。

3.SDH和PDH的比较传统的数字通信制式是异步数字系列(PDH)。

所谓异步是指各级比特率相对其标称值有一个规定容限的偏差,而且是不同源的。

在数字通信发展初期,异步数字系列起到很大作用,使数字复用设备能先于数字交换设备得到开发。

但在数字网技术迅速发展的今天,这种基于点对点的体制正暴露出一些固有的弱点。

SDH 的问世之所以被称为是通信传输体制上的重大变革,皆因其具有许多PDH所不及的优点。

1)SDH拥有全世界统一的网络节点接口(NNI),是真正的数字传输体制上的国际性标准。

长期以来,世界各国数字通信设备基本上都采用准同步数字系列(PDH),但由于PCM基群复用设备所采用的编码律及复用路数不同,故形成了两种不同的地区性数字体制标准:一种是俄罗斯和欧洲系列(中国亦采用此系列),以2Mbit/s为基础;另一种是北美和日本系列,以1.5sMbit/s为基础。

由于这两种系列具有不同的比特率,因此,各个国家的设备只有通过光/电转换变成标准电接口才能互通,在光路上则无法实现互相调配。

由于两大系列难以兼容,限制了联网应用的灵活性,增加了网络运营成本,故给国际间互通联网带来了困难,而且向更高群次发展在技术上也有更大难度。

由于SDH有一套开放的标准化光接口,因而使现有准同步两大数字系列得以兼容,可以很方便地在光路上实现不同厂家新产品的互通,使信号传输、复用和交换过程得到简化,从而降低联网成本。

2)SDH拥有一套标准化的信息结构等级,称为同步传送模块(STM),并采用步复用方式,使得利用软件就可以从高速复用信号中一次分出(插入)低速支路信号,不仅简化了上下话路的业务,也使交叉连接得以方便实现。

3)SDH拥有丰富的开销比特(约占信号的5%),以用于网络的运行、维护和管理。

SDH具有自愈保护功能,可大大提高网络的通信质量和应付紧急的能力。

SDH网结构有很强的适应性,现有的准同步数字体系、同步数字体系和宽带综合业务数字网(B-ISDN)均可进入其帧结构。

二.FDDI1.简介光纤分布数据接口(FDDI=fiber-distribute data interface)是目前成熟的LAN技术中传输速率最高的一种。

这种传输速率高达100Mb/s的网络技术所依据的标准是ANSIX3T9.5。

该网络具有定时令牌协议的特性,支持多种拓扑结构,传输媒体为光纤。

2.特点使用光纤作为传输媒体具有多种优点:1)较长的传输距离,相邻站间的最大长度可达2KM,最大站间距离为200KM 2)具有较大的带宽,FDDI的设计带宽为100Mb/s.3)具有对电磁和射频干扰抑制能力,在传输过程中不受电磁和射频噪声的影响,也不影响其设备。

4)光纤可防止传输过程中被分接偷听,也杜绝了辐射波的窃听,因而是最安全的传输媒体。

3.应用由光纤构成的FDDI,其基本结构为逆向双环。

一个环为主环,另一个环为备用环。

一个顺时针传送信息,另一个逆时针。

当主环上的设备失效或光缆发生故障时,通过从主环向备用环的切换可继续维持FDDI的正常工作。

这种故障容错能力是其它网络所没有的。

FDDI使用了比令牌环更复杂的方法访问网络。

和令牌环一样,也需在环内传递一个令牌,而且允许令牌的持有者发送FDDI帧。

和令牌环不同,FDDI网络可在环内传送几个帧。

这可能是由于令牌持有者同时发出了多个帧,而非在等到第一个帧完成环内的一圈循环后再发出第二个帧。

令牌接受了传送数据帧的任务以后,FDDI令牌持有者可以立即释放令牌,把它传给环内的下一个站点,无需等待数据帧完成在环内的全部循环。

这意味着,第一个站点发出的数据帧仍在环内循环的时候,下一个站点可以立即开始发送自己的数据。

FDDI用得最多的是用作校园环境的主干网。

这种环境的特点是站点分布在多个建筑物中。

FDDI也常常被划分在城域网MAN的范围三.MSTP1.简介:MSTP(Multi-Service Transfer Platform)(基于SDH 的多业务传送平台)是指基于SDH 平台同时实现TDM、ATM、以太网等业务的接入、处理和传送,提供统一网管的多业务节点。

2.原理:MSTP可以将传统的SDH复用器、数字交叉链接器(DXC)、WDM终端、网络二层交换机和IP边缘路由器等多个独立的设备集成为一个网络设备,即基于SDH 技术的多业务传送平台(MSTP),进行统一控制和管理。

基于SDH的MSTP最适合作为网络边缘的融合节点支持混合型业务,特别是以TDM业务为主的混合业务。

它不仅适合缺乏网络基础设施的新运营商,应用于局间或POP间,还适合于大企事业用户驻地。

而且即便对于已敷设了大量SDH网的运营公司,以SDH为基础的多业务平台可以更有效地支持分组数据业务,有助于实现从电路交换网向分组网的过渡。

所以,它将成为城域网近期的主流技术之一。

SDH必须从传送网转变为传送网和业务网一体化的多业务平台,即融合的多业务节点。

MSTP的实现基础是充分利用SDH技术对传输业务数据流提供保护恢复能力和较小的延时性能,并对网络业务支撑层加以改造,以适应多业务应用,实现对二层、三层的数据智能支持。

即将传送节点与各种业务节点融合在一起,构成业务层和传送层一体化的SDH业务节点,称为融合的网络节点或多业务节点,主要定位于网络边缘。

3.特点:1)业务的带宽灵活配置,MSTP上提供的10/100/1000Mbit/s系列接口,通过VC的捆绑可以满足各种用户的需求;2)可以根据业务的需要,工作在端口组方式和VLAN方式,其中VLAN方式可以分为接入模式和干线模式:·端口组方式:单板上全部的系统和用户端口均在一个端口组内。

这种方式只能应用于点对点对开的业务。

换句话说,也就是任何一个用户端口和任何一个系统端口(因为只有一个方向,所以没有必要启动所有的系统端口,一个就足够了)被启用了,网线插在任何一个启用的用户端口上,那个用户口就享有了所有带宽,业务就可以开通。

·VLAN方式:分为接入模式和干线模式。

其中的接入模式,如果不设定VLAN ID,则端口处于端口组的工作方式下,单板上全部的系统和用户端口均在一个端口组内。

如果设定了VLAN ID,需要设定“端口VLAN标记”。

这是因为交换芯片会为收到的数据包增加VLAN ID,然后通过系统端口走光纤发到对端同样VLAN ID 的端口上。

比如某个用户口VLAN ID为2,则对应站点的用户端口的VLAN ID也应该设定为2。

这种模式可以应用于多个方向的MSTP业务,这时每个方向的端口都要设置不同的VLAN ID。

然后把该方向的用户端口和系统端口放置到一个虚拟网桥中。

3)可以工作在全双工、半双工和自适应模式下,具备MAC地址自学习功能;4)QoS设置:QoS实际上限制端口的发送,原理是发送端口根据业务优先级上有许多发送队列,根据QoS的配置和一定的算法完成各类优先级业务的发送。

因此,当一个端口可能发送来自多个来源的业务,而且总的流量可能超过发送端口的发送带宽时,可以设置端口的QoS能力,并相应地设置各种业务的优先级配置。

当QoS不作配置时,带宽平均分配,多个来源的业务尽力传输。

QoS的配置就是规定各端口在共享同一带宽时的优先级及所占用带宽的额度。

4.应用:MSTP技术在现有城域传输网络中备受关注,得到了规模应用,并且即将作为业界的一项行业标准而发布。

它的技术优势与其他技术相比在于:解决了SDH 技术对于数据业务承载效率不高的问题;解决了ATM/IP 对于TDM业务承载效率低、成本高的问题;解决了IP QoS不高的问题;解决了RPR技术组网限制问题,实现双重保护,提高业务安全系数;增强数据业务的网络概念,提高网络监测、维护能力;降低业务选型风险;实现降低投资、统一建网、按需建设的组网优势;适应全业务竞争需求,快速提供业务。

MSTP使传输网络由配套网络发展为具有独立运营价值的带宽运营网络,利用自身成熟的技术优势提供质高价廉的带宽资源,满足城域带宽需求。

相关主题