当前位置:文档之家› 单容水箱液位组态控制实验报告

单容水箱液位组态控制实验报告

4 单容水箱液位组态控制实验报告学院:自动化学院班级:学号:姓名:单容水箱液位组态一.实验目的:1.熟悉单容水箱液位调节阀PID 控制系统工作原理2.熟悉单用户项目组态过程3.掌握WINCC 画面组态设计方法4.掌握WINCC 过程值归档的组态过程5.掌握WINCC 消息系统的组态过程6.掌握WINCC 报表系统的组态过程二:单容水箱实验原理1、实验结构介绍水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过闸板开度来改变。

被调量为水位H 。

分析水位在调节阀开度扰动下的动态特性。

直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。

(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。

)调整水箱出口到一定的开度。

突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。

通过物料平衡推导出的公式:μμk Q H k Q i O ==,那么 )(1H k k Fdt dH -=μμ, 其中,F 是水槽横截面积。

在一定液位下,考虑稳态起算点,公式可以转换成μμR k H dtdH RC =+。

公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 02=就是水阻。

给定值 图4-1单容水箱液位数学模型的测定实验如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示: )1()(0+=TS S KR S G 。

相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。

2、控制系统接线表测量或控制量 测量或控制量标号使用PLC 端口 使用ADAM 端口下水箱液位 LT103 AI0 AI0调节阀FV101 AO0 AO03参考结果单容水箱水位阶跃响应曲线,如图4-2所示:图4-2 单容水箱液位飞升特性此时液位测量高度184.5 mm ,实际高度184.5 mm -3.5 mm =181 mm 。

实际开口面积5.5x49.5=272.25 mm²。

此时负载阀开度系数:s m x H Q k /1068.6/5.24max -==。

水槽横截面积:0.206m²。

那么得到非线性微分方程为(标准量纲)::H H dt dH 24003.000138.0206.0/)668000.0000284.0(/-=-=进行线性简化,可以认为它是一阶惯性环节加纯延迟的系统KeG sτ。

s=-Ts(+/()1)三.对A3000的系统理解:A3000高级过程控制实验系统独创现场系统概念,而不是对象系统。

现场系统包括了实验对象单元、供电系统、传感器、执行器(包括电动调节阀、变频器及调压器)、以及半模拟屏,从而组成了一个只需接受外部标准控制信号的完整、独立的现场环境。

1、A3000特点(1)现场系统通过一个现场控制箱,集成供电系统、变频器、移相调压器、以及现场继电器,所有驱动电力由现场系统提供。

它仅需通过标准接线端子接收标准控制信号即能完成所有实验功能。

从而实现了现场系统与控制系统完全独立的模块化设计。

(2)现场控制箱侧面是工业标准接线端子盒。

这种标准信号接口可以使现场系统与用户自行选定的DCS系统、PLC系统、DDC系统方便连接,甚至用户自己用单片机组成的系统都可以对现场系统进行控制。

(3)现场系统的设计另外的优势是保证动力线与控制线的电磁干扰隔离。

(4)现场系统的设计保证了控制系统只需要直流低压就可以了,使得系统设计更模块化,更安全、具有更大的扩展性。

A3000-FS系统结构原理图如图2-1所示。

图2-1 A3000现场系统结构图现场系统包括三个水箱,一个大储水箱,一个锅炉,一个工业用板式换热器,两个水泵,大功率加热管,滞后时间可以调整的滞后系统,一个硬件联锁保护系统。

传感器和执行器系统包括5个温度、3个液位、1个压力,1个电磁流量计,1个涡轮流量计,1个电动调节阀,两个电磁阀,2个液位开关。

2、现场系统面板左侧设置:Ø 电源:220V AC单相电源开关,380V AC三相电源开关。

Ø 开关:三个旋钮开关,分别是1#、2#工频电源开关,以及变频器控制水泵的开关。

可以拔出上面水泵的电力连线,连接到不同的位置,从而更改各个水泵的电力来源。

可以是工频,也可以是变频器。

如果用户不需要变频调速,则建议全部使用工频控制。

按照设计,使用变频器控制的水泵,其面板对应的指示灯可能不工作,因为变频器可能输出0-50Hz,而继电器不能工作。

Ø 两个拨动开关,分别是现场系统照明用电源开关,以及变频器STF(正转)控制开关。

注意在机柜上还有并联的一个STF控制端,如果要设置工作模式,请断开该控制端。

为了避免控制逻辑太复杂,我们一般不连接机柜上的这个开关。

Ø 电压表:显示加在调压器上的电压值。

Ø 变频器:对于A3000FBS系统,则具有Profibus DP控制端子。

面板右侧是现场系统的模拟屏,安装有5个指示灯和滞后管系统的两手动调节阀。

当两个水泵、两个电磁阀开启时,其状态指示灯分别点亮。

当锅炉内水位超过低限液位开关时,液位开关闭合,联锁控制指示灯点亮,可以开始对锅炉加热。

3、支路分析现场系统包含两个支路。

支路1有1#水泵,换热器,锅炉,还可以直接注水到三个水箱以及锅炉。

支路2有2#水泵,压力变送器,电动调节阀,三个水箱,还有一路流入换热器进行冷却。

(1)支路1分析支路1包括左边水泵,1#流量计,电磁阀等组成,可以到达任何一个容器,锅炉以及换热器。

水泵可以使用变频器控制流量,电磁阀可能没有。

由于支路1可以与锅炉形成循环水,可以做温度控制实验。

为了保证加热均匀,应该使用动态水,本系统设计了一个水循环回路来达成此目的。

即打开JV304、JV106、XV101,关闭其它阀门(注意JV104),开启1#水泵,则锅炉内的水通过1#水泵循环起来。

锅炉内有高、低限两个液位开关,可以进行联锁保护。

当锅炉内液位低于低限液位开关时,液位开关打开,加热器无法开启。

当液位超过它时,液位开关合上,加热器信号连通,因此可以防止加热器干烧。

高限液位开关有两个作用:第一,当锅炉内水温超过温度上限时,通过联锁控制,打开2#电磁阀,注入冷水,使锅炉内温度快速下降;第二,当锅炉内水量超过液位上限时,高限液位开关闭合,通过联锁控制,关闭2#电磁阀,不再注入冷水。

支路1上有一个工业用板式换热器,其冷、热水出口各有一个温度传感器,可以做热量转换实验。

锅炉底部连接有滞后管系统。

打开JV501、JV502,关闭JV503,锅炉内的水只流过第一段滞后管,进入储水箱。

打开JV503,关闭JV502,水流过两段滞后管,即增加了滞后时间。

在滞后管出口装有一个温度传感器,可以做温度滞后实验。

(2)支路2分析支路2包括右边的水泵,2# 流量计,压力变送器,电动调节阀。

可以到达任何一个容器,锅炉以及换热器。

水泵可以使用变频器控制流量,也可以使用电动调节阀,对于小流量使用调节阀比较准确,对于要求快速控制的,则使用变频器比较方便。

支路2有一个电动调节阀,配合三个水箱(各装一个压力变送器),可以做单容、双容、三容实验,以及液位串级实验、换热器温度串级实验,以及换热器解耦控制实验。

水箱装有压力变送器,测得水箱的压力信号,之后转换为液位信号。

对于单容实验,我们配有一块反正切闸板、一个截面呈三角形的柱体。

反正切闸板替换矩形闸板,用于不同阻力下液位数学模型的测定实验。

三角形柱体放入水箱中,可以做非线性容积实验,以及单容水箱容积改变的液位数学模型测定实验。

对于流量控制实验,我们可以选择支路2,用电动调节阀作为执行器。

同时启动两个支路的水泵,可以做比值控制实验:将支路1流量固定(用涡轮流量计测量流量值),设定一个比值系数,用PID控制支路2的流量与支路1成比例。

对于较复杂的前馈-反馈控制实验,设计使用两个支路的多个设备来完成。

以换热器温度-流量前馈反馈实验为例,设备包括:锅炉、换热器、两个水泵、调节阀、涡轮流量计、电磁流量计。

前馈控制部分,通过测量换热器热水入口温度及流量,控制调节阀开度,实现冷水流量控制;反馈控制部分,通过测量换热器热水出口温度,控制调节阀开度,实现冷水流量控制。

四:实验内容及步骤1实验内容:基于A3000的单容水箱液位调节阀PID控制单容下水箱液位PID控制流程图如图4-1所示。

水介质由泵P101从水箱V104中加压获得压头,经由调节阀FV101进入水箱V103,通过手阀QV-116回流至水箱V104而形成水循环;其中,水箱V103的液位有LT103测得,用调节手阀QV-116的开启程度来模拟负载的大小。

本实验运行的基本环境:本实验的重要的环境就是利用PLC、W i n C C工业控制环境实现对于工业过程的检测与控制,另外充分利用Matlab强大的算法能力,从而在PLC+WinCC+Matlab实现工业过程的先进控制实验。

图4-1 单容下水箱液位PID控制流程图本实验为定值自动调节系统,FV101为操纵变量,LT103为被控变量,采用PID 调节来完成。

控制测点清单如表4-1所示。

2实验步骤:1.组态画面(1)规划画面布局,插入图形对象或控件,并进行图形对象的静态属性设置,要求组态流程图画面如图4-2所示,在此基础上可进行优化画面设计。

图4-3 实时曲线显示(替换为WinCC的实时数据的趋势控件)图4-5 消息系统显示(替换为WinCC的报警控件)A3000是利用西门子PID 单回路控制,上图为PID 控制组态画面PID 控制器参数整定首先,需要把准备好的数据组()y u ,通过导入命令,导入时域数据;然后进行预处理包括 Remove trend 、Remove mean 等;第二,把经过预处理过的数据,进行系统辨识的“估计”。

选择Estaimate 中“过程模型”命令进行估计(Process Model)。

Process Model 的模型结构包含增益K 、极点个数选择(最多三阶)、零点选择(最多1个)、系统延迟环节选择。

第三,把得到的模型参数进行记录(二)PID 控制器参数整定西门子PID 公式ER S LAG TM STV s TN GAIN LMN **_1**11*⎥⎦⎤⎢⎣⎡+++= IMC-PID 设计的标准公式]11[*]11[1112+++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡++=s s s K s s s s K g F D I c F I I D I c c ττττττττ西门子PID 公式ER S LAG TM STV s TN GAIN LMN **_1**11*⎥⎦⎤⎢⎣⎡+++= IMC-PID 设计的标准公式]11[*]11[1112+++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡++=s s s K s s s s K g F D I c F I I D I c c ττττττττS7-300控制系统是利用SIMATIC S7-200, S7-300/400站创建可编程逻辑控制程序的标准软件。

相关主题