当前位置:文档之家› 新人教版八年级下册物理第12章知识点全面总结

新人教版八年级下册物理第12章知识点全面总结

12简单机械杠杆知识点一、杠杆1、什么是杠杆?一根硬棒,在力的作用下能绕着固定点转动,这根硬棒就是杠杆。

说明:①“硬棒”不一定是直棒,只要在外力作用下不变形的物体都可以看成杠杆,杠杆可以是直的也可以是任意形状的。

①一根硬棒能成为杠杆,应具备两个条件:一是要有力的作用;二是能绕固定点转动。

两个条件缺一不可。

例如:撬棒在没有使用时就不能成为杠杆。

杠杆的形状可以是直的,也可以是弯的,但必须是硬的,固定点可以在杠杆的一端,也可以在杠杆的其他位置。

2、杠杆的五要素:五要素物理含义支点杠杆可以绕其转动的点,用“O”表示动力是杠杆转动的力,用“F1”表示阻力阻碍杠杆转动的力,用“F2”表示动力臂从支点O到动力F1作用线的距离,用“l1”表示阻力臂从支点O到阻力F2作用线的距离,用“l2”表示①杠杆的支点一定在杠杆上,可以在杠杆的一端,也可以在杠杆的其它位置。

同一杠杆,使用方法不同,支点的位置也不可能不同。

在杠杆转动时,支点是相对固定的。

①动力和阻力是相对而言的,不论是动力还是阻力,杠杆都是受力物体,跟杠杆发生相互作用的物体都是施力物体。

动力和阻力的作用效果正好相反。

①动力作用点:动力在杠杆上的作用点。

①阻力作用点:阻力在杠杆上的作用点。

①力臂是支点到力的作用线的距离,不是支点到力的作用点的距离。

某个力作用在杠杆上,若作用点不变,lll力的方向改变,力臂一般要改变。

①力臂有时在杠杆上,有时不在杠杆上,如果力的作用线恰好通过支点,则力臂为零。

①力臂的表示与画法:过支点做力的作用线的垂线①力臂的三种表示方式:选择哪种方式,根据个人习惯而定。

4、力臂的画法:第一步:先确定支点,即杠杆绕着转动的固定点,用字母“O”表示。

第二步:确定动力和阻力。

人的目的是将石头撬起,则人应向下用力,此力即为动力,用“F 1”表示。

这个力F 1的作用效果是使杠杆逆时针转动,阻力的作用效果恰好与动力的作用效果相反,在阻力的作用下杠杆应沿着顺时针方向转动,则阻力的作用效果杠杆应沿着顺时针方向转动,则阻力是石头施加给杠杆的方向向下的压力,用“F 2”表示。

第三步:画出动力臂和阻力臂。

将力的作用线正向或反向延长,由支点向力的作用线作垂线,从支点到垂足的距离就是力臂,并标明动力臂与阻力臂的符号“l 1”“l 2”。

知识点二、杠杆的平衡条件1、杠杆平衡:在力的作用下,如果杠杆处于静止状态或绕支点匀速转动时,我们就可以认为杠杆是平衡了。

2、实验探究:杠杆的平衡条件实验器材:杠杆和支架、钩码、刻度尺、线。

实验步骤:①调节杠杆两端的螺母,使杠杆在不挂钩码时,保持水平并静止,达到平衡状态。

在调节时,如果杠杆的左边下沉,则应将杠杆两端的平衡螺母向右调,如果杠杆的右边下沉,则应将杠杆两端的平衡螺母向左调,简称“左沉右调,右沉左调”。

②如图所示,在杠杆两边挂上不同数量的钩码,调节钩码的位置,使杠杆重新在水平位置平衡。

这时杠杆两边收到钩码的作用力的大小都等于钩码重力的大小。

把支点右方的钩码对杠杆施的力当成动力F 1,支点左方的钩码对杠杆施的力当成阻力F 2;用刻度尺测量出杠杆平衡时的动力臂l 1和阻力臂l 2;把F 1、l 1、F 2、l 2的数据填入实验表格中。

③改变动力F 1和动力臂l 1的大小,相应调节阻力F 2和阻力臂l 2的大小,再做两次实验,将结果填入实验表格探究归纳:只有动力×动力臂=阻力×阻力臂,杠杆才平衡注意:①试验中,调节平衡螺母,使杠杆在水平位置平衡,有两个目的:一是让杠杆的重心刚好在支点,重力的力臂为0,以消除杠杆的重力对实验的影响;二是便于测量力臂(或从带有刻度的杠杆上直接读取力臂)。

①试验中应改变钩码的个数或位置进行多次试验,得出普遍规律,防止结论的偶然性。

①在实验过程中绝不能再调节平衡螺母,因为实验过程中再调节平衡螺母,会破坏原有的平衡。

3、杠杆的平衡条件表达式:动力x 动力臂=阻力x 阻力臂,即动力臂阻力臂阻力动力=;公式表示为21212211l l F F l F l F ==,即应用公式计算时,单位要统一,即动力和阻力的单位要统一,动力臂和阻力臂的单位要统一。

4、杠杆转动方向的判断①当2211l F l F ≠时,杠杆的平衡即被破坏,原来静止的杠杆就要转动起来,原来匀速转动的杠杆将变速转动。

①影响杠杆转动的因素:作用在杠杆上的两个例F 1和F 2,如果产生的效果不同,一个力的作用效果若使杠杆沿顺时针方向转动,另一个力的作用效果将一定使杠杆沿逆时针方向转动,一个是动力时,另一个就称为阻力。

但杠杆是否转动、怎样转动,应看F 1l 1与F 2l 2的大小关系,并不单纯取决于F 1、F 2的大小关系,也不单纯取决于力臂l 1和l 2的大小关系。

也就是说,影响杠杆转动的因素不单是力,也不单是力臂,而是力和力臂的乘积。

①转动方向的判断:当F 1l 1>F 2l 2时,杠杆沿F 1的方向转动;当F 1l 1<F 2l 2时,杠杆沿F 2的方向转动。

知识点三、生活中的杠杆1、等臂杠杆:天平的动力臂与阻力臂相等,在使用中既不省力也不省距离。

2、省力杠杆:利用撬棒用较小的动力就能撬动较重的重物,省力杠杆动力臂比阻力臂长,虽然省力,但动力作用点移动的距离比阻力作用点移动的距离大,省力却费距离。

3、费力杠杆:动力臂比阻力臂短,动力比阻力大,这类杠杆动力作用点移动的距离不阻力作用点移动的距离小,虽然费力,却省了距离。

归纳总结:三种杠杆的比较力臂关系平衡时力的关系优缺点应用等臂杠杆l1=l2F1=F2不省力,不省距离天平省力杠杆l1>l2F1<F2省力,费距离撬棒、瓶盖起子费力杠杆l1<l2F1>F2费力,省距离镊子、钓鱼竿注意:①凡省力的杠杆必定费距离,凡费力的杠杆必定省距离,既省力又省距离的杠杆是不存在的。

①判定杠杆的种类,主要通过比较动力臂和阻力臂的大小进行判断,如果动力臂大于阻力臂,则为省力杠杆,反之则为费力杠杆,对于较复杂的杠杆,最好在图上找到支点、动力、阻力,然后画出动力臂和阻力臂进行比较。

对于一些不容易判断力臂大小的杠杆,我们可以根据杠杆是省距离还是费距离的角度来判断,如用筷子吃饭时省距离,则筷子为费力杠杆。

①省力杠杆与费力杠杆的应用不同,省力杠杆一般应用在阻力很大的情况下,而费力杠杆一般用在阻力不大的情况下,是为了省距离,使用起来方便。

滑轮知识点一、定滑轮和动滑轮1、定滑轮和动滑轮1)滑轮:滑轮是个周边有槽,能绕轴转动的小轮。

2)使用滑轮时,滑轮的轴固定不动,这种滑轮叫做定滑轮。

3)滑轮的轴随被吊物体一起运动,这种滑轮叫做动滑轮。

4)滑轮的实质:滑轮是一种变形的杠杆,滑轮可以连续旋转,因此可以看做连续旋转的杠杆。

2、定滑轮和动滑轮的特点设计实验与制定计划:分别使用同一物体在不使用滑轮、使用定滑轮、使用动滑轮时匀速运动,记录整个过程需要用力的大小,物体移动的距离及动力移动的距离,动力的方向,然后由数据分析得出结论。

实验器材:钩码两个,滑轮两个,弹簧测力计一个等。

实验过程:①按图甲所示测出钩码的重力G。

①按图乙所示安装定滑轮,让钩码匀速上升的高度h=10cm,记录弹簧测力计的示数F、拉力方向及绳子自由端移动的距离s。

①按图丙所示安装动滑轮,让钩码匀速上升的高度h=10cm,记录弹簧测力计的示数F、拉力方向及绳子自由端移动的距离s。

①换用数量不同的钩码,重复上面的步骤。

实验记录:如下表所示使用简单机械情况拉力大小F/N钩码提升10cm时绳端移动的距离s/cm拉力方向不使用简单机械24610上使用定滑轮24610下使用动滑轮12320上①对比用甲、乙两图所做实验记录的数据可知:使用定滑轮时,拉力F与钩码重力G相等,绳端移动的距离s与钩码升高的高度h相同。

(忽略绳子与滑轮间的摩擦力和滑轮与轴间的摩擦力,绳子的重力)①对比用甲、丙两图所作实验记录的数据可知:使用动滑轮时,拉力F=1/2G,绳端移动的距离s=2h。

(忽略动滑轮与绳的重力和摩擦力)实验结论:①使用定滑轮不省力,也不省距离,但可以改变力的方向。

①使用动滑轮可以省力,但不改变力的方向,而且费距离。

注意事项:①弹簧测力计要匀速拉动。

①动力的方向与并排的绳子平行。

①选用质量较小的动滑轮。

①保证滑轮轴间摩擦较小。

3、定滑轮和动滑轮的实质①定滑轮可以看成一个变形的杠杆,滑轮的轴相当于支点,动力臂和阻力臂都等于滑轮的半径,即l1=l2,根据杠杆的平衡条件Fl1=Gl2可知:F=G,即使用定滑轮不省力。

可见定滑轮的实质是一个等臂杠杆。

由于等臂杠杆不省力也不省距离,所以使用定滑轮时,物体上升的高度h和绳子自由端下降的距离s相等。

①动滑轮也可以看成一个变形的杠杆,支点O在滑轮的边缘上,动力臂l1为滑轮所在圆的直径,阻力臂l2为圆的半径,因此动力臂l1为阻力臂l2的两倍,故动力F1是阻力F2的二分之一,即使用动滑轮能够省一半力,可见,动滑轮的实质是动力臂为阻力臂2倍的省力杠杆。

使用动滑轮能省一半力,则需要费一倍的距离,即被提升的物体每上升h,绳的自由端移动的距离s=2h4、使用定滑轮和动滑轮的几种情况(图中物体全部匀速运动,物体的重力都为G)种类图示表达式定滑轮F=GF=f,f为物体A所受的摩擦力动滑轮知识拓展:(1)使用定滑轮时,拉力F 不沿竖直方向而改为其他方向时的拉力大小的分析,改变拉力F 得方向,右图中杠杆的示意图可以得出L 1=L 2=r ,由杠杆平衡条件知,F 1=F 2=G ,因此低于定滑轮来说,施加在绳端的力无论朝哪个方向,定滑轮都是一个等臂杠杆,在绳重和摩擦可以忽略不计的情况下,所用的拉力都等于物体的重力。

(2)使用动滑轮时,拉力F 不沿竖直方向时的拉力大小的分析:L 2=r,而L 1<2r ,根据杠杆平衡条件:F 1L 1=F 2L 2得F 1>1/2F 2,当重物匀速上升时,F 2=G ,则F 1>1/2G 。

由此可见,对于动滑轮来说:①动滑轮在移动的过程中,支点也在不停地移动。

①动滑轮省一半力的条件是:a.动滑轮与重物一起匀速移动。

b.动力F 的方向与物体移动的方向一致;c.不计动滑轮重,绳重和摩擦。

5、定滑轮和动滑轮的比较 滑轮 定滑轮 动滑轮 钩码重 GG拉力大小 F=G (不靠路摩擦) F=1/2G (不考虑摩擦和动滑轮重) 方向与钩码上升方向相反 与钩码上升方向相同 钩码移动距离 h h 拉力移动距离 s=h s=2h 省力情况不省力省一半力 改变力的方向情况 能改变力的方向 不能改变力的方向实质 相当于一个等臂杠杆 相当于一个省力杠杆,动力臂是阻力臂的2倍 事例升旗起重机知识点二、滑轮组1、在实际应用中,人们常常把定滑轮和动滑轮组合在一起,构成滑轮组。

使用滑轮组既省力又可以改变力的方向,但同时要多移动距离。

相关主题