一、热塑性高聚物熔融指数的测定熔融指数 (Melt Index 缩写为MI) 是在规定的温度、压力下,10min 内高聚物熔体通过规定尺寸毛细管的重量值,其单位为g 。
min)10/(600g tW MI ⨯=影响高聚物熔体流动性的因素有内因和外因两个方面。
内因主要指分子链的结构、分子量及其分布等;外因则主要指温度、压力、毛细管的内径与长度为了使MI 值能相对地反映高聚物的分子量及分子结构等物理性质,必须将外界条件相对固定。
在本实验中,按照标准试验条件,对于不同的高聚物须选取不同的测试温度与压力。
因为各种高聚物的粘度对温度与剪切力的依赖关系不同,MI 值只能在同种高聚物间相对比较。
一般说来,熔融指数小,即在12、 34测定取向度的方法有X 射线衍射法、双折射法、二色性法和声速法等。
其中,声速法是通过对声波在纤维中传播速度的测定,来计算纤维的取向度。
其原理是基于在纤维材料中因大分子链的取向而导致声波传播的各向异性。
几个重要公式:①传播速度C=)/(10)(1063s km t T L L ⨯∆-⨯- 单位:C-km/s ;L-m ;T L -?s ;△t-?s ②模量关系式 2C E ρ= ③声速取向因子 221CC f u a -= ④?t(ms)=2t 20-t 40(解释原因)Cu 值(km/s ):PET= 1.35,PP=1.45,PAN=2.1,CEL=2.0 (可能出选择题)测定纤维的C u 值一般有两种方法:一种是将聚合物制成基本无取向的薄膜,然后测定其声速值;另一种是反推法,即先通过拉伸试验,绘出某种纤维在不同拉伸倍率下的声速曲线,然后将曲线反推到拉伸倍率为零处,该点的声速值即可看做该纤维的无规取向声速值C u (见图1)。
思考题:1、影响实验数据精确性的关键问题是什么?答:对纤维的拉伸会改变纤维的取向。
所以为保证测试的精确性,每种纤维试样至少取3根以上迸行测定。
2、比较声速法与双折射法,两者各有什么特点?三、光学解偏振法测聚合物的结晶速度(无计算题,最好知道公式。
背思考题。
)测定聚合物等温结晶速率的方法:比容、红外光谱、X 射线衍射、广谱核磁共振、双折射法等。
本实验采用光学解偏振法,它具有制样简便、操作容易、结晶温度平衡快、实验重复性好等优点。
实验原理:由实验测定等温结晶的解偏振光强-时间曲线,从曲线可以看出,在达到样品的热平衡时间后,首先是结晶速度很慢的诱导期,在此期间没有透过光的解偏振发生,而随着结晶开始,解偏振光强的增强越来越快,并以指数函数形式增大到某一数值后又逐渐减小,直到趋近于一个平衡值。
对于聚合物而言,因链段松弛时间范围很宽,结晶终止往往需要很长时间,为了实验测量的方便,通常采用211t 作为表征聚合物结晶速度的参数,21t 为半结晶期。
即为图2中210=--∞∞I I I I t 时所对应的时间。
聚合物结晶过程可用下面的方程式描述:nKt eC -=-1 。
式中:C 为t 时刻的结晶度;K 为与成核及核成长有关的结晶速度常数;n 为Avrami 指数,为整数,它与成核机理和生长方式有关。
若将上式左边对lg t 作图得一条直线,其斜率为Awami 指数n ,截距就是lg K 。
本实验以等规聚丙烯粒料为试样,采用结晶速度仪测定其结晶速率。
思考题:1、聚合物的结晶速度与哪些因素有关?答:分子主链结构,取代基侧链,分子量;温度,压力,应力、添加剂等。
2、根据实验图分析结晶温度对结晶速度的影响。
四、差示扫描量热法测定聚合物等温结晶速率实验原理:采用DSC 法测定聚合物的等温结晶速率时,首先将样品装入样品池,加热到熔点以上某温度保温一段时间,消除热历史,然后迅速降到并保持某一低于熔点的温度,记录结晶热随时间的变化,如图1(a )。
可以看到随结晶过程的进行,DSC 谱图上出现一个结晶放热峰。
当曲线回到基线时,表明结晶过程已完成。
记放热峰总面积为A0,从结晶起始时刻(t 0)到任一时刻t 的放热峰面积A t 与A 0之比2I I +∞0I ∞I iτ0t 21t ∞解偏振光强时间图2 等温结晶的解偏振光强—时间曲线结晶在Tg 和Tm 之间。
靠近Tg ,链段难运动;靠近Tm ,晶核难生记为结晶分数X(t):()0A A t X t=以结晶分数X(t)对时间作图,可得到图1(b段大多数球晶发生碰撞,结晶只能在球晶的缝隙间进行,生成附加晶片,称为二次结晶。
聚合物等温结晶过程可以用Avrami 方程进行描述:()nKt X -=-ex p 1式中,X 为结晶分数,K 为总结晶速率常数,n 为Avrami 指数,与成核机理和晶粒生长的方式有6、该实验使用PVA (聚乙烯醇),溶剂为去离子水。
思考题图2 的关系图C CC C sp 对和对τηln1、讨论影晌分子量测定的主要因素。
答:毛细管粘度计的选择(选溶剂的流经时间>100s ),溶液浓度,测试温度。
2、什么情况下需要做动能校正?为什么?六、加聚反应动力学——膨胀计法测反应速度1、膨胀计是测定聚合速度的一种方法。
它的依据是单体密度小,聚合物密度大,此时随着聚合反应的进行,体积会发生收缩。
当一定量单体聚合时,体积的变化与转化率成正比。
如果将这种体积的变化放在一根直径很窄的毛细管中观察,其灵敏度将大为提高,这种方法就是膨胀计法。
2、几种方法测反应速度:直接法和间接法。
间接法有膨胀计法、测比重、测折射率、测比容等。
3、[][][]M I k dtM d v p 21=-=。
此式表示聚合反应速度v p 与引发剂浓度[I ]的平方根成正比,与作用。
2、为什么在尼龙66盐熔融后会产生大量水分?而随着反应进行水分反而消失?答:尼龙66盐在200℃熔融以及发生缩聚反应,在水的脱出的同时伴随着酰胺键的生成,形成线型高分子,因此反应开始水分大量生成,产生水的速度比水蒸发的速度慢所以逐渐减少。
八、丝朊-聚丙烯腈系接枝共聚物的制备接枝共聚物一般借骨架高聚物的大分子接上支链而成。
接枝共聚反应亦单体和骨架高聚物所处的状态可分为均相接枝共聚物和非均相接枝共聚物反应。
后者又可以分为气一固相及液一固相介质共聚反应。
本实验采用链转移引发的自由基型接枝共聚反应,以丝朊为骨架高聚物,丙烯腈为单体制得丝朊一聚丙烯腈接枝共聚物。
丝朊含量约30%,可以制成似丝纤维,亦称改性腈纶,其回潮率约4%,比腈纶高,比蚕丝低。
本实验采用均相接枝共聚,以60%氯化锌溶液为溶剂,用过硫酸铵(APS)-亚硫酸氢钠(SDS)氧化-还原体系SI’)进行接枝共聚。
SP 系统接枝共聚由于丝朊不溶于二甲基甲酰胺,腈纶不溶于10%氯化钙甲酸溶液,因此PANg物不溶于上述两种溶剂,而该两种恰好是腈纶和丝朊的良好溶剂,故可利用溶解性之不同而鉴别之。
S P-PAN系接枝共聚物的鉴定单2、讨论实验体系中各成份的作用?答:单体(醋酸乙烯酯):反应物。
引发剂(过硫酸铵):引发剂受热分解生成自由基,然后引发聚合。
乳化剂(聚乙烯醇):使单体在乳状液中稳定;使单体在胶束中增溶;使聚合生成的聚合物胶乳粒子稳定;增加聚合物的溶解性;对引发聚合反应起催化作用等。
(《合成工艺学》P72)增塑剂:邻苯二甲酸二丁酯缓冲剂(碳酸氢钠):中和乳液的PH值,以保持乳液的稳定性。
3、讨论乳化剂对乳液聚合动力学的影响?4、本实验中为何要分批添加单体和引发剂?答:(书P76)半连续操作目的在于控制反应速度,所以后加物料主要是单体。
为了使乳化剂与单体量匹配,所以一部分乳化剂溶液与单体同时后加入。
(书P77)后加单体的方式使在反应器内物料体系中缺乏单体,因而①容易产生向聚合物进行链转移的反应,导致产生支链;②使聚合速度加快;③还可控制聚合物组成和所得胶粒颗粒形态。
十、多糖的选择性氧化2,2,6,6-四甲基哌啶氧化物自由基(TEMPO)-NaOCl-NaBr对多糖类高分子的选择性氧化已成研究热点。
研究表明该氧化体系对多糖发生高选择性氧化,但氧化度与其结晶结构相关,并且在氧化过程中会发生降聚作用。
根据有关试验,TEMPO和NaBr 在反应中仅起催化作用,因此推测是TEMPO、NaBr 以及NaOCl共同反应生成真正起氧化作用的亚硝鎓离子TEMPO+,从而将C6位伯羟基氧化成羰基,而后羰基氧化成羧基(如分散介质水去离子水思考题:答:聚乙烯醇的作用机理是高分子物吸附在液滴表面,形成一层保护膜,使液滴接触时不会粘结。
同时,加了水溶性高分子物质后,介质粘度增加,也有碍于液滴的粘连。
2、根据实验体会,结合聚合反应机理,你认为在悬浮聚合的操作中,应特别注意哪些问题,原因何在?答:①聚合反应时要注意合适的搅拌强度和转速,使反应充分进行,又不至粘结成团。
②保证水浴加热,使反应温度达到85~90℃,此时聚合热逐渐放出,油滴开始变粘易发生粘连,需密切注意温度和转速的变化。
③选择合适的水与单体比,并加入合适的分散剂。
因为悬浮聚合中聚合物种类和颗粒大小、形状等都有差异。
3、结合悬浮聚合的理论,说明配方中各组分的作用。
答:悬浮聚合体系一般有单体、引发剂、水、分散剂四个基本组分组成。
(参考乳液聚合的各组分作用。
)悬浮聚合体系是热力学不稳定体系,需借搅拌和分散剂维持稳定。
在搅拌剪切作用下,溶有引发剂BPO 的单体苯乙烯分散成小液滴,悬浮于水中引发聚合。
不溶于水的单体在强力搅拌作用下,被粉碎分散成小液滴,它是不稳定的,随着反应的进行,分散的液滴又可能凝结成块,为防止粘结,体系中必须加入分散剂。
4、分散剂的作用原理是什么?其用量大小对产物粒子有何影响?答:悬浮聚合体系是热力学不稳定体系,需借搅拌和分散剂维持稳定。
悬浮聚合中形成微珠,当微5 6 78光的折射率n 称为慢⊥⊥==v D t v D t 、11。
因为1v v >⊥,所以1t t <⊥。
设光程差为R ,则:()⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-=-=⊥⊥⊥v v v v D v D v D v t t v R 111 由折射定律可得平行与垂直偏光的折射率为: 11v v n =、⊥⊥=v vn 所以n Dg n n D R ∆=-=⊥)(1上式表明,光程差R 等子偏振光在纤维中通过的距离D 和纤维双折射率的乘积。
因偏振光在纤维中通过的距离D 等于纤维平均直径d 所以双折射率Δn 可以表示为 dR n =∆ 由此可知,具有各向异性的纤维材料其双折射率直接与快、慢光之间的光程差有关。
通常把色那蒙补偿法归属于光程差法,其原因也在于此。
3、1/4玻片(下称???玻片)的作用:由于合振动方程在一般位相差情况下为斜椭圆,无法用旋转检偏镜的方法在视野中找刭完全消光的位置,因此就需要使用补偿的方法,将椭圆偏振光变为平面偏振光。
从讲义中的等效原理分析得知只有使?/4玻片的光轴方向与起偏镜光轴方向平行,并使纤维试样与起偏光轴成45o 时,经?/4玻片补偿后的合成偏光才成为平面偏振光。