数字式电容测试仪的设计目录摘要 ................................................................................... 综述 (1)1 方案设计与分析 (2)1.1恒压充电法测量 (2)1.2恒流充电法测量 (2)1.3脉冲计数法测量 (2)2 电路设计框图及功能描述 (3)2.1 电路设计框图 (3)2.2 电路设计功能描述 (3)3 电路原理设计及参数计算 (4)3.1电路原理设计 (4)3.2单元电路设计与参数计算 (4)3.2.1控制器电路 (4)3.2.2时钟脉冲发生器 (5)3.2.3计数和显示电路 (6)4 单元电路仿真波形及调试 (8)4.1多谐振荡器 (8)4.2单稳态触发器 (9)4.2.1稳定状态 (9)4.2.2暂稳态状态 (9)4.2.3 自动回复状态 (9)4.3电路原理图与仿真结果显示 (10)4.3.1电路原理图 (10)4.3.2仿真结果显示 (11)5课程设计体会 (14)参考文献 (15)摘要本设计是基于555定时器,连接构成多谐振荡器以及单稳态触发器而测量电容的。
单稳态触发器中所涉及的电容,即是被测量的电容C。
其脉冲输入信号是555定时器x构成的多谐振荡器所产生。
信号的频率可以根据所选的电阻,电容的参数而调节。
这样便可以定量的确定被测电容的容值范围。
因为单稳态触发器的输出脉宽是根据电容Cx 值的不同而不同的,所以脉宽即是对应的电容值,其精确度可以达到0.1%。
单稳态触发器输出的信号滤波,使最终输出电压v与被测量的电容值呈线性关系。
最后是输出电o压的数字化,将v输入到74160计数译码器中翻译成BCD码,输入到LED数码管中显示o出来。
关键词:电容;555定时器;线性;计数译码器;LED数码管综述本设计主要运用数字电子技术基础,在通过对设计要求的分析后选择设计方案,此设计题目为了复习和巩固已学过的数电与模电理论知识和操作技能,掌握数电各种芯片的特性与作用,学会用仿真软件进行程序设计和电路分析。
学习和训练查阅各种技术资料,编制相关的专业技术文件的基本技能。
根据本次课程任务相关要求,本设计分为三部分,第一脉冲信号的产生,第二由测量电容构成单稳态触发器产生的脉宽,第三计数译码器与数码管的配合使用。
在日常的电路工程或者是电路实验中,电容是一种最常见的云器件,实际应用中,对电容的电容值的精确度要求也很高。
在实际操作中,对电容的测量存在许多麻烦,数值的表现也不够直观。
为此,我们查阅资料,根据所学的知识,设计一个数字电容测试仪,只要接入被测电容,就能直接在屏幕中显示电容的容值,方便在以后实验中对电容的使用。
孙浩锋:数字式电容测试仪1 方案设计与分析1.1恒压充电法测量用一个电阻和电容串联,用恒压源对电容充电,然后和、、根据电容充电的曲线超过某个固定电压所需要的时间,利用曲线拟合的方法测量。
由于时间和容值是非线性的。
因此测量难度高,精度低,并且难以实现数字化。
1.2恒流充电法测量用恒流源对电容充电,此时电容的容值和充电时间是成正比的,所以可以利用AD 或者比较功能同某个固定电容比较,实现电容测量。
使用这种方法来测量,精度较上一种方法有所提高,且便于操作和实现。
弹药使用恒流源,恒流源的设计要求很高,且达不到测量所需要的精度要求。
1.3脉冲计数法测量由555定时器两个电阻和一个电容构成的多谢振荡电路,产生较稳定的振荡频率。
再由一个555定时器和一个电阻以及的一个电容构成单稳态触发器,并将上述多谢振荡电路产生的振荡信号作为单稳态触发器的触发信号,此方法测量比较精确,并且容易调节所测电容值的范围。
综上述的三种方法,我选择第三种。
辽宁工程技术大学电子技术课程设计2 电路设计框图及功能描述2.1电路设计框图2.2电路设计功能描述脉冲产生电路采用由555定时器改接的多谐振荡器,多谐振荡器产生固定频率的脉冲,用来给74160计数译码器提供计数脉冲,脉冲个数控制电路采用由555定时器改接的单稳态触发器,利用单稳态触发器或电容器充放电规律等,可以把被测电容的大小转换成脉冲的宽窄,即控制脉冲宽度 Tx 严格 与 Cx 成正比。
因此,只要把此脉冲与频率固定不变的方波即时钟脉冲相与,便可得到计数脉冲,把计数脉冲送给计数器计数,然后再送给显示器显示,这个时侯,如果时钟脉冲的频率等参数调得合适的话,那么数字显示器显示的数字 N 便是 Cx 的大小孙浩锋:数字式电容测试仪3 电路原理设计及参数计算本设计分为三个量程,分别为100pf-999pf、1nf-999nf、1uf-100uf,下述单元电路均以量程1uf-100uf为基准3.1电路原理设计利用单稳态触发器或电容器充放电规律等,可以被测电容的大小转换成脉冲的宽窄,即控制脉冲宽度 Tx严格与 Cx成正比.只要把此脉冲与频率固定不变的方波即时钟脉冲相与,便可得到计数脉冲,把计数脉冲送给计数器计数,然后再送给显示器显示.如果时钟脉冲的频率等参数合适,数字显示器显示的数字 N便是 Cx的大小。
3.2单元电路设计与参数计算3.2.1控制器电路控制器的主要功能是根据被测电容 Cx的容量大小形成与其成正比的控制脉冲宽度Tx.图3-2-1所示为单稳态控制电路的原理图.该电路的工作原理如下:图3-2-1 单稳态控制电路的原理图当被测电容 Cx接到电路中之后,只要按一下开关 S,电源电压Vcc送给 555定时器的低电平触发端2一个负脉冲信号使单稳态触发器由稳态变为暂稳态,其输出端3由低电平变为高电平.该高电平控制与门使时钟脉冲信号通过,送入计数器计数.暂稳态的脉冲宽度为Tx=1.1RCx.然后单稳态电路又回到稳态,其输出端3变为低电平,从而封锁与门,停止计数。
可见,控制脉冲宽度 Tx与RCx成正比.如果R固定不变,则计数时钟脉冲的个数将与Cx的容量值成正比,可以达到测量电容的要求。
由于设计要求,Cx的变化范围为 100p F~100μF,设测量的时间Tx为2s左右,也就根据 Tx=1.1RCx可求得:R=T(Ln3*Cx)=18.182k (3-2-1) 取R=18k实际Tx=Ln3*Cx*R=1.9775s3.2.2 时钟脉冲发生器这里选用由555定时器构成的多谐振荡器来实现时钟产生功能。
电路原理图及其输出波形如图3-2-2所示图3-2-2 电路原理图及其输出波形由图3-2-2求的电容C2的充电时间T1和放电时间T2各为T1=(R1+R2)*C2*Ln2 (3-2-2) T2=R2*C2*Ln2 (3-2-3) 故振荡波形的周期为T=T1+T2=(R1+2R2)*C2*Ln2 (3-2-4) 振荡频率为f=1/T=1/((R1+2R2)*C2*Ln2) (3-2-5) 因为时钟周期是在忽略了555定时器6脚的输入电流条件下得到的,而实际上 6脚有电流流入.因此,为了减小该电流的影响,应使C2=1F μ。
又因为要求 Cxmax =100F μ时,Tx=1.9775s ,所以需要时钟脉冲发生器在该时间内产生 100脉冲.即时钟脉冲周期应为T=19.975ms. 取C2=1uF ,则 :R1+2*R2=T/(C2*Ln2)=28.53k (3-2-6) 取标称值:R1=4.53k ,R2=10k.3.2.3 计数和显示电路由于计数器的计数范围为1F μ—100F μ,因此需要采用 3个二——十进制加法计数器.这里选用 3片74160级联起来构成所需的计数器.一片74LS160和数码管连接如图3-2-3所示:图3-2-3 74LS160和数码管连接图三片74LS160和三个数码管连接出来的显示图如图3-2-4所示:图3-2-4 三片74LS160和三个数码管连接出来的显示图4 单元电路设计的仿真波形4.1 多谐振荡器由555定时器组成的多谐振荡器产生的波形如图4-1-1所示,它既为下一级的单稳态触发器提供输入脉冲,又为后面计数器开始计数提供信号脉冲。
图4-1-1 多谐振荡器电路波形其工作原理如下:多谐振荡器只有两个暂稳态。
假设当电源接通后,电路处于某一暂稳态,电容C 上电压Uc 略低于cc U 31,Uo 输出高电平,V1截止,电源UCC 通过R1、R2 给电容C 充电。
随着充电的进行UC 逐渐增高,但只要cc c cc U U U 3231 , 输出电压Uo 就一直保持高电平不变,这就是第一个暂稳态。
当电容C 上的电压Uc 略微超过cc U 32时(即U6和U2均大于等于cc U 32时), RS 触发器置 0,使输出电压Uo 从原来的高电平翻转到低电平,即Uo=0,V1导通饱和,此时电容C 通过R2和V1放电。
随着电容C 放电,Uc 下降,但只要cc c cc U U U 3132 , Uo 就一直保持低电平不变,这就是第二个暂稳态。
当Uc 下降到略微低于cc U 31时,RS 触发器置 1,电路输出又变为Uo=1,V1截止,电容C 再次充电,又重复上述过程,电路输出便得到周期性的矩形脉冲。
其振荡周期为:()2ln 2R T 021C R +=工作波形如图4-1-2所示。
图4-1-2 多谐振荡器波形4.2单稳态触发器由555定时器构成的单稳态触发器产生的波形如图4-2-1所示,它可以产生占空比一定的脉波,此脉波用来控制计数。
单稳态触发器的工作原理如下:4.2.1 稳定状态没有加触发信号时,输入i u 为高电平。
接通电源后,CC V 经电阻R 对电容C 进行充电,当电容C 上的电压CC c V u 32≥时,输出0=o u 。
与此同时电容C 迅速放完电,0≈c u ,0=o u 不变。
4.2.2 触发进入暂稳态当i u 由高电平变为低电平时,此时0≈c u ,输出o u 由低电平跳跃到高电平。
此时,电源CC V 经R 对C 充电,电路进入暂稳态。
在暂稳态期间内输入电压i u 回到高电平。
4.2.3 自动返回稳定状态随着C 的充电,电容C 上的电压c u 逐渐增大。
当c u 上升到CC c V u 32≥时,输出o u 由高电平跳跃到低电平。
与此同时,C 迅速放完电,0≈c u 。
电路返回稳定状态。
单稳态触发器输出的脉冲宽度W t 为暂稳态维持的时间(及占空比),它实际上为电容C 上的电压由0≈c u V 充到CC V 32所需的时间,可用下式估算:RC RC t w 1.13ln ≈= 式中R 和C 为外接电阻和电容。
图4-2-1 单稳态触发电路波形4.3电路原理图与仿真结果显示4.3.1 电路原理图如下图4-3-1所示(以量程1uf-100uf 为例)图4-3-1 电路原理图4.3.2 仿真结果显示Cx=10uf的测试结果显示如图4-3-2图4-3-2 Cx=10uf测试结果Cx=100uf测试结果图显示如图4-3-3图4-3-3 Cx=100uf测试结果改变为1nf=999nf的量程,令C3=0.1uf,R1=1800k,R2=4.5k(参数代码以仿真图显示为准)。