普通陶器:即指土陶盆、罐、缸、瓮,以及耐火砖等具有多孔性着色坯体的制品,原料颗粒比较粗。
瓷:用高岭土等烧制成的材料,质硬且脆,比陶质细致,也称瓷器瓷石:主要含石英和绢云母。
由于它是石质,一般是用机器粉碎。
瓷石是天然配好的制瓷原料,在1200-1250℃的温度下可以单独烧成瓷器,这就是所谓的“一元配方”。
高岭土:元代,景德镇发现了高岭土,并将其掺入瓷石中,即所谓的“二元配方”,它提高了原料中铝的含量,使瓷胎可以耐受1280-1300℃的高温,这是提高瓷胎坚固性的必要条件。
陶瓷:以无机非金属物质为原料,在制造或使用过程中经高温(540℃以上)煅烧而成的制品和材料。
狭义:无机非金属材料中的一种类型(水泥、玻璃、陶瓷等)。
广义:一切无机非金属材料及制品统称陶瓷。
特点:1、原料丰富(Clarke value,占地壳总量的70-80%)2、性能优越:(抗压)强度高、耐高温、耐磨损、耐腐蚀、抗氧化等3、与金属、高分子、复合材料呈四足鼎立之势传统陶瓷:由粘土等硅酸盐天然原料为主的坯料制成的日用餐具、耐火材料、水泥、瓶玻璃、卫生洁具等。
近代陶瓷:以Al2O3、ZrO2、TiO2、SiC、Si3N4等人工原料或合成原料为坯料制成的陶瓷。
特种陶瓷:采用高度精选的原料,具有能精确控制的化学组成、严格控制成型及烧结工艺所合成的,达到设计的微观结构和精确的尺寸精度,并具有优异特性的陶瓷。
日本称技术陶瓷结构陶瓷:用于机械结构零件的陶瓷。
功能陶瓷:具有特殊的电、磁、声、光、热、化学及生物功能的陶瓷。
陶瓷材料的结构与性能1、材料的成分、显微组织结构与性能(一体化,正交化试验方法)2、材料的结构受到组成及加工工艺的制约3、显微结构的研究指导材料工艺的制订与优化特种陶瓷的主要研究领域1、优化结构,获得优异性能2、材料的性能评价与可靠性单相多晶体:陶瓷的相组成主要由单一相的多个晶体组成多相多晶体:除了晶相(可能多相)外,还有气孔和玻璃相晶相的结构:晶粒大小(晶粒度)、分布、形态,结晶特性、取向、晶界及表面形态晶相:决定陶瓷基本性能的主导物相。
单相多晶、多相多晶晶形:晶体在形成、生长过程中,习惯性地、自发地按一定的规律生长和发育成一定的几何形态。
(自形晶:完整(完全发育)晶体;半自形晶和他形晶:生长受到抑制,部分完整或很不完整。
)主晶相:决定材料基本性能。
次生相:对陶瓷性能起重要调节性能。
(析出相)玻璃相:配料中引入的各种杂质组分经高温烧结的物理、化学反应,形成液相,冷却时转变为玻璃相(常分布于晶界部位)。
结构与作用—烧结体中起粘结作用,粘结晶相,连续分布—填充气孔、烧结体致密化—降低烧结温度,促进烧结—抑制晶体长大、防止晶形转变(低温烧结)—有利于杂质、添加物的重新分布—液相量依陶瓷的用途而定(液相量↑易变形,耐火度↓强度↓介电性↓)—热处理,促进玻璃相晶化—玻璃相有利于提高日用瓷的透明度—釉料绝大多数形成玻璃气孔:1、孤立状态、球形、分布于玻璃相、晶内、晶界2、易造成应力集中、减小有效截面面积,强度↓3、介电性(介电损耗↑)透明度↓4、隔热、消音、过滤功能(多孔陶瓷(连通气孔))形成:—烧结温度低、时间短(欠烧)—气体来自结构水、碳酸盐及硫酸盐分解及有机物氧化(脱蜡、去除粘结剂、增塑剂等)—烧结环境中气氛的扩散—烧结温度过高或升温过快(过烧)晶粒:晶相的组成单元,是陶瓷材料最基本、最重要的显微组成。
影响晶粒大小的因素:原料的粒度分布、配方化学组成、烧结制度等(粒度较细、配方精确、合理科学的原料选择、配料、混料、成型、烧成制度等,特别地,在配料中加入添加物)晶粒取向:晶粒在空间的位置与方向织构:取向相同的晶粒,择优取向—各向异性(组织概念)陶瓷是以晶体为主的多晶集合体。
—各向同性特种成形工艺,如热压,可能导致晶粒的择优取向导致组织应力、热应力,变形开裂表面:与真空或本身蒸气接触的面界面:表面与另一相物质直接接触时,称为界面(晶界与相界)表面能:一定数量的质点从体内变成表面原子所需的能量表面缺陷:表面凹凸(缺口效应)与微裂纹晶界:不同位向的毗邻晶粒间的原子(离子)的过渡排列。
(几个-几百个原子层厚度)晶界应力:晶界上由于杂质排列不规则而使质点距离疏密不均,从而形成微观的机械应力。
晶粒越大,晶界应力越大,易产生裂纹,导致断裂。
界面工程:—晶界(细化晶粒)强韧化—晶界钉扎、弥散强化特种陶瓷与传统陶瓷的区别:1、成分上:有天然硅酸盐原料发展到人工精选或合成原料2、结构上:有以硅-氧四面体基本结构单元发展到单纯铝-氧、锆-氧八面体和硅-碳、硅-氮四面体以及其它结构单元的组合3、晶粒尺寸上:由普通陶瓷的1-100μm发展到10nm-1μm,精细陶瓷4、工艺上:由液相烧结发展到少量或没有液相的固相烧结分类:1、按晶质与非晶质的含量:全晶质、半晶质和玻璃质结构2、主晶相的晶粒尺寸:伟晶、巨晶、粗晶、中晶、细晶、微晶和隐晶结构伟晶:d>3cm 巨晶:d=1~3cm 粗晶:d=10 ~ 5mm 中晶:d=2 ~ 5mm 细晶:d =0.2 ~ 2mm 微晶:d =0.02 ~ 0.2mm 2.隐晶:d <0.02mm(矿物学)3、主晶相晶粒的相对大小:均粒状、非均粒状和斑状结构4、主晶相晶粒的自形程度:自形晶、半自形晶及他形晶5、晶粒(组织)的形态:粒状、柱状、柱粒状、针状、片状、树枝状、网络状、放射状6、气孔形态与分布:粗孔、细孔、微孔结构7、其它:欠烧、过烧结构,缺陷结构、反应结构、分相结构、熔蚀结构等按晶粒形态分类(常用的分类方法)1、粒状结构:晶粒大小相近,彼此相互接触,具颗粒状(等轴晶)等轴晶对应高致密度和高性能2、柱状结构:主晶呈柱状,晶粒尺寸相近,排列无序3、柱粒状结构:晶粒大小不均、悬殊不大、粗晶粒呈柱状、细晶粒呈粒状,充填在柱粒之间4、针状结构:晶粒细长如针状,相互交织构成网状5、斑状结构:晶粒大小悬殊,粗晶形成斑晶,细晶构成基质,当基质为玻璃时,构成玻璃斑状结构按物理-化学过程分类1、反应结构:晶体相在高温过程的物理化学过程中被置换或被熔蚀所留下的残骸或形成的熔蚀边界2、定向结构:在温度梯度或应力作用下,主晶相为柱状或长条状,定向排列3、缺陷结构:烧结制度或氧分压控制不当,晶粒大小悬殊,晶内、晶间布满气孔和裂纹(异常长大)4、欠烧与过烧结构:烧结温度偏低,晶体发育不良,未形成固定的晶型;烧结温度偏高,晶体易受熔蚀以致晶面弯曲5、分相结构:陶瓷通过某种机理分离成两种互不混溶的液相6、复合结构:两种或以上不同组分结合,表现出特有的双重结构,并具独特的性能缺陷♠气孔:1)原料颗粒不均匀堆积(桥接),2)其它物质污染,3)不合理的烧结制度(温度过高或过低、有机物未充分去除等)♠异常晶粒长大(二次再结晶)—导致晶粒的穿晶断裂,异于小晶粒的沿晶断裂(冰糖状断口)—烧结过程的不均匀致密化造成,局部有更快的致密化速率—晶界的不均匀钉扎造成—晶界少量的液相♠团聚和第二相夹杂物分散性差、混料不均导致软、硬团聚夹杂物—材料强度及可靠性显著降低高温蠕变:高温长时间恒温、恒压作用下,即使应力小于屈服强度,也会缓缓发生塑性变形的现象。
通过位错滑移、晶界滑动和迁移等方式进行。
蠕变及断裂机制:位错滑移蠕变(位错滑移、攀移)空位扩散蠕变(Nabarro-Herring蠕变)晶界滑移蠕变(晶界位错滑移与攀移,介于位错滑移与空位扩散之间)液相存在下的蠕变(界面溶解析出模型及液相扩散模型)沿晶断裂形式,晶界滑移引起应力集中与空位扩散,形成蠕变空洞,在与拉应力垂直晶界上聚集成为裂纹高温缺陷——高温蠕变与裂纹扩展—玻璃相在晶界形成一层薄的(约1 nm)的非晶态层—高温蠕变产生晶界滑移和蠕变孔隙(空位)、形成裂纹并扩展变形特性:1、弹性变形弹性模量E:原子间结合力的大小,也即化学键的强弱(晶格类型、原子间距) 单晶体:各向异性,多晶体:各向同性复合材料(层板):E//=E1V1 +E2V2(等应变),E┴=E1 E2/(E1V2 +E2V1)(等应力)影响因素:T↑E↓(石墨除外)、T m ↑E↑、致密度↑E↑陶瓷材料:E压缩>>E拉伸组织不敏感性缺陷结构(置换原子、第二相等)组织结构(组织转变、冷塑性变形)对E影响不大2、塑性变形—塑性低(键强、滑移系少,位错形成及运动极困难)—离子晶体高温呈现一定的塑性,高温下更多的滑移系。
—共价键晶体高温不易滑移3、超塑性:在高温和低应变速率下出现的异常高的塑性变形率的现象。
相变超塑性(陶瓷在承载时的温度循环产生相变来获得超塑性)组织超塑性(特定的组织在恒定应变速率下获得超塑性)细晶粒超塑性4、高温蠕变:形成晶间玻璃相,T↑η↓Griffith脆性断裂理论材料中存在裂纹(孔隙、裂纹、夹杂等)外力作用下,裂纹尖端应力集中,大于σth,材料断裂C>>a,σ< σth裂纹的三种扩展方式:张开型(I型)、滑开型(II型) 与撕开型(III型),以I 型最为常见平面应力:只在平面内有应力,与该面垂直方向的应力可忽略,例如薄板拉压问题。
平面应变:只在平面内有应变,与该面垂直方向的应变可忽略,例如蒸汽管道气压问题。
具体说来:平面应力是指所有的应力都在一个平面内,如果平面是OXY平面,那么只有正应力σx,σy,剪应力τxy(它们都在一个平面内),没有σz,τyz,τzx。
平面应变是指所有的应变都在一个平面内,同样如果平面是OXY 平面,则只有正应变εx,εy和剪应变γxy,而没有εz,γyz,γzx。
1)、纤维增韧机制:纤维断裂、拔出桥连、裂纹转向2)、连续长纤维增韧3)、短纤维和晶须(单晶体,低缺陷)4)、颗粒增韧机制:细化晶粒、裂纹转向与分叉5)、界面结构:强结合界面(界面扩散、界面反应)、弱结合界面(机械结合、弱相互作用)与ZrO2相变相关的增韧机制—相变过程,M相变(Ms~M f)—尺寸效应dc, d I, dmd<d I,过于稳定,无相变d I <d< d c,应力诱发相变,相变增韧1、外加张应力作用,应力诱发相变2、相变吸收能量3、裂纹尖端产生压应力当σ<σf时,裂纹钝化d c < d< d m,冷却过程相变,残余应力增韧尺寸较小的粒子相变时,总膨胀变小,应变能也小,不足以使基体产生微裂纹,这些应变能就以残余应力的形式存在下来,当主裂纹进入残余应力区时,残余应力释放,阻碍主裂纹的进一步扩展。
(对主裂纹产生压应力作用)d>dm,微裂纹增韧1、诱发的微裂纹<2C crit,为安全裂纹、钝化裂纹2、导致主裂纹偏转、分叉,吸收断裂能,在更高应力下断裂。
桥联增韧:多晶陶瓷中局部晶粒的桥联、延性颗粒及纤维(晶须)补强主要增韧方法与材料相变增韧:ZrO2的增韧是多重机制的综合,应力诱发相变,微裂纹分叉,微裂纹偏转和残余应力等。