当前位置:文档之家› 量子理论

量子理论

量子理论量子理论量子理论是能够微观世界规律的物理学理论。

量子理论是现代物理学的两大基石之一。

量子理论提供了新的关于自然界的表述方法和思考方法。

量子论揭示了微观物质世界的基本规律,为原子物理学、固体物理学、核物理学和粒子物理学奠定了理论基础。

它能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收与辐射等。

量子理论-简介量子理论在经典物理学的理论中能量是连续变化的,可以取任意值。

19世纪后期,科学家们发现很多物理现象无法用这一理论解释。

1900年12月14日,德国物理学家普朗克(M.Planck,1858-1947)提出:像原子作为一切物质的构成单元一样,“能量子”(量子)是能量的最小单元,原子吸收或发射能量是一份一份地进行的。

后来,这一天被认为是量子理论的诞生日。

1905年,德国物理学家爱因斯坦(A.Einstein,1879-1955)把量子概念引进光的传播过程,提出“光量子”(光子)的概念,并提出光同时具有波动和粒子的性质,即光的“波粒二象性”。

20世纪20年代,法国物理学家德布罗意(P.L.de Broglie,1892-1987)提出“物质波”概念,即一切物质粒子均具备波粒二象性;德国物理学家海森伯(W.K.Heisenberg,1901-1976)等人建立了量子矩阵力学;奥地利物理学家薛定谔(E.Schrödinger,1887-1961)建立了量子波动力学。

量子理论的发展进入了量子力学阶段。

1928年,英国物理学家狄拉克(P. A.M.Dirac,1902-1984)完成了矩阵力学和波动力学之间的数学转换,对量子力学理论进行了系统的总结,并将两大理论体系——相对论和量子力学成功地结合起来,揭开了量子理论发展的第三阶段——量子场论的序幕。

量子理论是现代物理学的两大基石之一,为从微观理解宏观提供了理论基础。

量子理论-发展历程量子理论量子理论的初期:1900年普朗克为了克服经典理论解释黑体辐射规律的困难,引入了能量子概念,为量子理论奠下了基石。

随后,爱因斯坦针对光电效应实验与经典理论的矛盾,提出了光量子假说,并在固体比热问题上成功地运用了能量子概念,为量子理论的发展打开了局面。

1913年,玻尔在卢瑟福有核模型的基础上运用量子化概念,提出玻尔的原子理论,对氢光谱作出了满意的解释,使量子论取得了初步胜利。

随后,玻尔、索末菲和其他物理学家为发展量子理论花了很大力气,却遇到了严重困难。

旧量子论陷入困境。

量子理论的建立:1923年,德布罗意提出了物质波假说,将波粒二象性运用于电子之类的粒子束,把量子论发展到一个新的高度。

1925年-1926年薛定谔率先沿着物质波概念成功地确立了电子的波动方程,为量子理论找到了一个基本公式,并由此创建了波动力学。

几乎与薛定谔同时,海森伯写出了以“关于运动学和力学关系的量子论的重新解释”为题的论文,创立了解决量子波动理论的矩阵方法。

1925年9月,玻恩与另一位物理学家约丹合作,将海森伯的思想发展成为系统的矩阵力学理论。

不久,狄拉克改进了矩阵力学的数学形式,使其成为一个概念完整、逻辑自洽的理论体系。

1926年薛定谔发现波动力学和矩阵力学从数学上是完全等价的,由此统称为量子力学,而薛定谔的波动方程由于比海森伯的矩阵更易理解,成为量子力学的基本方程。

1900年,Planck假定能量是由独立的微粒组成的,或者说量子。

1905年,爱因斯坦把能量和辐射用同样的方式进行了系统的量子化工作。

1924年,Louis de Broglie 指出在能量和物质的构成和行为方面没有本质上的差别,在原子或亚原子级别上的行为像微粒或者像波。

这里理论被称为波-粒二元性原理。

能量和物质的基本微粒的行为,依赖于周围环境,可能像微粒也可能像波。

1927年,Werner Heisenberg 提出精确的、同时测量两个互补的值,像亚原子微粒的位置和能量,是不可能的。

与传统物理学原理不同,对他们同时进行测量一定会出错:较精确的值被正确的测量了,易出错的值成了测成了其它值得。

这一理论就是著名的不确定性原理,由此也产生了爱因斯坦的著名论断,“上帝不赌博。

”量子理论-力学发展量子理论光在空间的传播是相对论的关键,那么光的发射和吸收则带来了量子论的革命。

我们知道物体加热时会放出辐射,科学家们想知道这是为什么。

为了研究的方便,他们假设了一种本身不发光、能吸收所有照射其上的光线的完美辐射体,称为“黑体”。

研究过程中,科学家发现按麦克斯韦电磁波理论计算出的黑体光谱紫外部分的能量是无限的,显然发生了谬误,这为“紫外线灾难。

”提供了依据。

1900年,德国物理学家普朗克提出了物质中振动原子的新模型。

他从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。

关于量子论中的不连续性,我们可以这样理解:如温度的增加或降低,我们认为是连续的,从一度升到二度中间必须经过0.1.度0.1度之前必定有0.01度。

但是量子论认为在某两个数值之间例如1度和3度之间可以没有2度,就像我们花钱买东西一样,一分钱是最小的量了,你不可能拿出0.1分钱,虽然你可以以厘为单位计算钱数。

这个一分钱就是钱币的最小的量。

而这个最小的量就是量子。

他认为各种频率的电磁波,包括光只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光量子,简称光子。

根据这个模型计算出的黑体光谱与实际观测到的相一致。

这揭开了物理学上崭新的一页。

量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。

量子论不仅给光学,也给整个物理学提供了新的概念,故通常把它的诞生视为近代物理学的起点。

量子理论-原子核世界量子理论第一个意识到量子概念的普遍意义并将其运用到其它问题上的是爱因斯坦。

他建立了光量子理论解释光电效应中出现的新现象。

光量子论的提出使光的性质的历史争论进入了一个新的阶段。

自牛顿以来,光的微粒说和波动说此起彼伏,爱因斯坦的理论重新肯定了微粒说和波动说对于描述光的行为的意义,它们均反映了光的本质的一个侧面:光有时表现出波动性,有时表现出粒子性,但它既非经典的粒子也非经典的波,这就是光的波粒二重性。

主要由于爱因斯坦的工作,使量子论在提出之后的最初十年里得以进一步发展。

在1911年,卢瑟福提出了原子的行星模型,即电子围绕一个位于原子中心的微小但质量很大的核,即原子核的周围运动。

在此后的20年中,物理学的大量研究集中在原子的外围电子结构上。

这项工作创立了微观世界的新理论,量子物理,并为量子理论应用于宏观物体奠定了基础。

但是原子中心微小的原子核仍然是个谜。

原子核是微观世界中的重要层次,量子力学是研究微观粒子运动规律的理论,是现代物理学的理论基础之一,是探索原子核奥秘所不可缺少的工具。

在原子量子理论被提出后不久,物理学家开始探讨原子中微小的质量核--原子核。

在原子中,正电原子核在静态条件下吸引负电子。

但是什么使原子核本身能聚合在一起呢?原子核包含带正电质子和不带电的中子,两者之间存在巨大的排斥力,而且质子彼此排斥(不带电的中子没有这种排斥力)。

使原子核聚合在一起,并且克服质子间排斥力的是一种新的强大的力,它只在原子核内部起作用。

原子弹的巨大能量就来自这种强大的核力。

原子核和核力性质的研究对20世纪产生了巨大的影响,放射现象、同位素、核反应、裂变、聚变、原子能、核武器和核药物都是核物理学的副产品。

丹麦物理学家玻尔首次将量子假设应用到原子中,并对原子光谱的不连续性作出了解释。

他认为,电子只在一些特定的圆轨道上绕核运行。

在这些轨道上运行时并不发射能量,只当它从一个较高能量的轨道向一个较低轨道跃迁时才发射辐射,反之吸收辐射。

这个理论不仅在卢瑟福模型的基础上解决了原子的稳定性问题,而且用于氢原子时与光谱分析所得的实验结果完全符合,因此引起了物理学界的震动。

玻尔指导了19世纪20到年代的物理学家理解量子理论听起来自相矛盾的基本结构,他实际上既是这种理论的“助产师”又是护士。

玻尔的量子化原子结构明显违背古典理论,同样招致了许多科学家的不满。

但它在解释光谱分布的经验规律方面意外地成功,使它获得了很高的声誉。

不过玻尔的理论只能用于解决氢原子这样比较简单的情形,对于多电子的原子光谱便无法解释。

旧量子论面临着危机,但不久就被突破。

在这方面首先取得突破的是法国物理学家德布罗意。

他在大学时专业学的是历史,但他的哥哥是研究X射线的著名物理学家。

受他的影响,德布罗意大学毕业后改学物理,与兄长一起研究X射线的波动性和粒子性的问题。

经过长期思考,德布罗意突然意识到爱因斯坦的光量子理论应该推广到一切物质粒子,特别是光子。

1923年9月到10月,他连续发表了三篇论文,提出了电子也是一种波的理论,并引入了“驻波”的概念描述电子在原子中呈非辐射的静止状态。

驻波与在湖面上或线上移动的行波相对,吉它琴弦上的振动就是一种驻波。

这样就可以用波函数的形式描绘出电子的位置。

不过它给出的不是我们熟悉的确定的量,而是统计上的“分布概率”,它很好地反映了电子在空间的分布和运行状况。

德布罗意还预言电子束在穿过小孔时也会发生衍射现象。

1924年,他写出博士论文“关于量子理论的研究”,更系统地阐述了物质波理论,爱因斯坦对此十分赞赏。

不出几年,实验物理学家真的观测到了电子的衍射现象,证实了德布罗意的物质波的存在。

量子理论-不确定性量子理论海森伯格不确定原则是量子论中最重要的原则之一。

它指出,不可能同时精确地测量出粒子的动量和位置,因为在测量过程中仪器会对测量过程产生干扰,测量其动量就会改变其位置,反之亦然。

量子理论跨越了牛顿力学中的死角。

在解释事物的宏观行为时,只有量子理论能处理原子和分子现象中的细节。

但是,这一新理论所产生的似是而非的矛盾说法比光的波粒二重性还要多。

牛顿力学以确定性和决定性来回答问题,量子理论则用可能性和统计数据来回答。

传统物理学精确地告诉我们火星在哪里,而量子理论让我们就原子中电子的位置进行一场赌博。

海森伯格不确定性使人类对微观世界的认识受到了绝对的限制,并告诉我们要想丝毫不影响结果,我们就无法进行测量。

量子力学的奠基人之一薛定谔在1935年就意识到了量子力学中不确定性的问题,并假设了一个著名的猫思维实验:“一只猫关在一钢盒内,盒中有下述极残忍的装置(必须保证此装置不受猫的直接干扰):在盖革计数器中有一小块辐射物质,它非常小,或许在1小时中只有一个原子衰变。

在相同的几率下或许没有一个原子衰变。

如果发生衰变,计数管便放电并通过继电器释放一个锤,击碎一个小小的氰化物瓶。

如果人们使这整个系统自在1个小时,那么人们会说,如果在此期间没有原子衰变,这猫就是活的。

第一次原子衰变必定会毒杀了这只猫。

”量子理论-爱因斯坦对量子论的质疑量子理论1935年,爱因斯坦和两个同事普多斯基和罗森合作写了一篇驳斥量子理论完备性的论文,在物理学家和科学思想家中间广为流传。

相关主题