钢管的水压试验和涡流探伤试验比较展开全文锅炉钢管的水压试验和涡流探伤都是材料的致密性能试验,它们之间在试验方法上具有等效性;而且钢管的涡流探伤具有快速、准确、易实现自动化检测等特点,它在试验方法上优于既费时又费力、准确性较差的水压试验方法,因此,涡流探伤检测方法完全可以用来代替锅炉钢管的逐根水压试验,而其他形式的无损探伤方法不能代替涡流探伤的致密性试验,这对于控制锅炉钢管的材料质量和提高锅炉制造质量以及保证锅炉的安全可靠性都具有重要意义。
由于涡流探伤技术在锅炉钢管的质量检测和控制有很强的实用性,因而在锅炉行业中具有良好的应用前景和推广价值。
钢管水压试验机组一、锅炉钢管的质量问题锅炉用无缝钢管(以下简称锅炉钢管)是制造锅炉用的重要材料,它的质量如何将直接关系锅炉制造质量以致于安装质量和使用质量。
锅炉钢管质量本应是由钢管厂来作出保证的,但是在供不应求的情况下,提供给锅炉制造厂使用的锅炉钢管总免不了存在一些质量问题,用它制成的锅炉主要受压部件如水冷壁管、对流管、过热器管、换热器管等漏水或爆管现象时有发生,已成为困扰锅炉产品质量的一个大问题,对此锅炉制造厂和用户都很有意见。
在卖方市场的情况下,锅炉制造厂几乎承担了包括材料供应方在内的全部责任;如何控制锅炉钢管的质量现已成为锅炉制造厂家越来越关心的问题,解决的办法不外乎是两个:一个是对锅炉钢管进行逐根的水压试验;另一个是对锅炉钢管实行100%的涡流探伤。
二、锅炉钢管的缺陷与伤按照材料学的观点,优良的金属材料其化学成分、物理性能、几何形状应该是连续的、纯洁的和均匀的。
如果这三方面存在不足或受到破坏,就认为金属材料存在缺陷。
如果金属材料在几何形状上存在着不连续性(即不紧密性或不密实性或者不致密性),例如有裂纹、缩孔、起皮、凹坑、分层、针孔、夹渣等,则认为金属材料存在伤痕(简称为伤),它不包括化学成分的不连续或物理性能上的不连续。
从这里可以看出,缺陷包含着伤。
锅炉钢管在冶炼和轧制过程中同样可能存在缺陷和伤。
据钢管厂介绍,锅炉钢管的缺陷(这里主要是指伤)主要在表面,而且外表面多于内表面。
这些缺陷70%左右来自于原料(钢坯),钢坯中吹氧不够而残存的夹渣物、缩孔等,用它轧制钢管就有可能出现横向裂纹、夹层、折迭、重皮等缺陷,纵向裂纹多属轧制时拉伤造成的。
如果锅炉钢管中出现了这些缺陷或伤痕,就认为材质中出现了不连续,材料内部的致密性受到破坏,在水压试验时就有可能漏水,制成的锅炉受压元件在运行时就有可能发生泄漏或爆管。
正因为如此,为了保证锅炉钢管质量,不论是我国还是外国有关锅炉用无缝钢管的标准都明确规定,作为工艺性能保证,钢管应逐根作水压试验。
三、锅炉钢管的水压试验是致密性试验我国国家标准GB3087-82《低中压锅炉用无缝钢管》在技术要求中工艺性能规定:钢管应逐根作水压试验,不能出现漏水或出汗现象。
对于20号钢最大试验压为9.8MPa,耐压时间不得少于5秒。
水压试验的压力按下式计算:式中:P--试验压力,MPa;S--钢管的壁厚,mm;D--钢管的外径,mm;t--钢号规定屈服点的60%,MPa冶金部推荐标准YB(T)33-86《低中压锅炉用冷拔无缝钢管》也作了同样的规定。
例如:GB3087-82标准中20号钢Φ51×3钢管,此时屈服点为245MPa ,其水压试验压力为:水压试验压力应取9.8MPa我国冶金部推荐标准YB(T)32-86《高压锅炉用冷拔无缝钢管》在技术要求中工艺性能规定,钢管应逐根进行水压试验,最大压力为20MPa,试验时间不少于10秒。
在试验压力过程中,钢管不是出现漏水或出汗现象。
GB5310-85《高压用无缝钢管》也作了同样的规定。
通常认为,水压试验的目的有两种:一种是工艺性水压试验,其目的是检验材料(或部件)是否漏水,即检验材料的密封性能;另一种是验证性水压试验,其目的是检验材料(或部件)的强度是否足够。
从这里可以看出,锅炉钢管的水压试验是属于工艺性的水压试验,是材质的致密性试验,检验材料是否连续和是否密实;它不是验证强度的试验。
从材料力学的强度理论可知,无缝钢管属于细而长的构件,其直径很小,即使是壁厚较薄的细管也可承受很大的压力。
例如GB3087-82标准中20号钢Φ51×3钢管,假设其外表有1.5mm 深的裂纹,对它进行强度水压试验,当它达到爆管或漏水时其压力仍然很高(此时材料应力取抗拉强度:σb=392MPa)。
这说明其爆管压力远远超过水压试验压力。
也就是说,当钢管达到试验压力时,即使有较深的裂纹,也不可能发生漏水现象。
从这个实例计算可看出:钢管工艺性水压试验是难于发现漏水现象的,因而对埋藏比较深的缺陷就有可能存在漏检风险。
美国ASME-SA-450《碳钢管、铁素体合金钢管和奥氏体合金钢管通用规范》则十分明确的强调:“……水压试验是许多产品规范都提供的试验方法。
这种试验能够发现液体从内管壁向外渗漏的情形,可以用肉眼观察或者用压力下降来判断。
水压试验发现不了穿透管壁但又非常紧密的缺陷或者深入壁厚相当距离但尚未完全穿透的缺陷。
”日本一家著名的钢铁企业住友金属工业公司的企业标准B-NO440《冷拔锅炉无缝钢管制造技术条件》则明确规定:对每根钢管进行涡流探伤后,则该钢管不必进行水压试验,以涡流探伤代替水压试验。
德国标准DIN17175《用耐热钢制成的无缝钢管》标准同样规定,可用涡流探伤代替水压试验。
四、钢管的涡流探伤同样是致密性试验我国GB5310-85和YB(T)32-86标准十分明确规定:“凡经过涡流检验的钢管,可以不做水压试验。
”这是因为涡流探伤同样也是一种材质的致密性试验,它与水压试验是等效的。
德国钢铁试验规范SEP1925-74《钢管的涡流致密性试验》说:“涡流检验是一种致密性检验,用它代替水压试验--各种形状的空心体规定内压的水压试验。
”为什么说涡流探伤也是一种致密性试验呢?这还得从涡流探伤检测的基本原理谈起。
1、涡流检测的原理:涡流检测(ET)是常规无损检测技术之一,它适用于导电材料如铁磁性和非铁磁性的型材和零件以及石墨制品的检测,能发现裂缝、折迭、凹坑、夹杂、疏松等表面和近表面缺陷,通常能确定缺陷的位置和相对尺寸,但难于判定缺陷的种类。
涡流检测在型材(如管材、棒材、线材)的探伤、材料分选、测厚、测定试件的物理性能等方面都有广泛的应用。
涡流检测是以电磁感应理论为基础的,一个简单的涡流检测系统包括一个高频交流电压发生器,一个检测线圈和一个指示器。
高频电压发生器(或称为振荡器)供给检测线圈以激励电流,从而在试件(管材)及其周围形成一个激励磁场,这个磁场在试件中感应出旋涡状电流称为涡流;试件中的涡流及产生自己的磁场,涡流磁场的作用削弱或抵削激励磁场,从而产生磁场的变化。
这种变化取决于线圈与和管材间的距离、管材的几何尺寸、电导率和磁导率以及管材的冶金和机械缺陷。
当管材通过线圈时,由于管材的这些参量的变化,会引起电磁效应的变化而产生电信号,信号经过放大和转变,进行报警,记录和分选,最终可达到管材探伤的目的。
2、趋肤效应和趋肤深度直流电在导体内流过时,它在导体横截面上的电流密度分布基本上是均匀的,但是当交流电在导体内流过时,它在导体横截面上的电流分布是不均匀的。
表面层电流密度最大,愈进入导体中心其电流分布随着距离表面的浓度增加而衰减,此种现象称为交流电的趋肤效应。
交流电在导体横截面上的电流密度分布是按指数函数规律衰减的,即:式中:Io--表面电流密度,安培/米2;I--距表面深度δ处的电流密度,安培/米2;μ--导体的磁导率,亨利/米;σ--导体的电导率,1/欧姆·米;f--频率,赫芝;δ--趋肤深度,米;e--自然对数的底,e = 2.718 ……;趋肤效应的大小是以趋肤深度δ来描述,即电流密度减少到表面电流密度的1/e =37%时的密度,就是:当I/Io= I/e = e-1时,则上式表明,趋肤深度δ是与频率f的平方根成反比,f愈大则δ愈小。
在涡流检测中,工件的电导率和磁导率是不变的,唯一可改变的是激励电流的频率,因此,通过改变电流的频率即可检测出不同深度的缺陷。
在实际涡流探伤时,由于探伤工艺的需要,上式的物理意义有所变化。
如导体的磁导率μ用相对于磁导率μr表示,若是铁磁性材料经饱和磁化后,μr≈ 1;交流电源频率f用激励频率fd表示;导体的电导率用试件的电导率σ表示,单位改为1/微欧·厘米,或用试件的电阻率P表示,P = 1/σ。
此时,涡流探伤的标准趋肤深度d可用下式表示:例如:GB3087标准中20号钢Φ51×3钢管,材质为低碳钢,查表可知P = 16.9(微欧·厘米);若采用5KHz的激励频率在理论上具有的检出厚度为:从理论计算中看出,当采用上述探伤工艺时,Φ51×3钢管的全部壁厚都处在有效探伤检出范围之内,从理论上讲不会漏检。
3、端部效应在涡流检测中,由于工件的几何形状(边缘)急剧改变而引起邻边磁场和涡流干扰,将掩盖着一定范围的缺陷的检出。
这种现象称之为端部效应。
由于端部效应的存在,在钢管探伤时,当管子的端部(头和尾)进入或离开检测线圈时,对于位于靠近管子端部的缺陷,将失去灵敏度,管子端部通常存在着一段肓区。
因此,钢管涡流探伤都是整根进行的,生产工艺上是先涡流探伤,后切管下料。
4、涡流检测线圈检测线圈是涡流探伤的传感器,它的主要作用是:在导线工件上建立磁场,激励出涡流,传递探伤信息。
检测线圈基本形式有三种:穿过式,内插式和点式。
穿过式是线圈环绕被检测工件外部,让工件在其中自由通过。
管材探伤主要是采用穿过式。
这种线圈较适于快速自动化检测,也可采用点式线圈使其与钢管作相对螺旋运动。
应当指出的是涡流探伤的灵敏度是随着缺陷的埋藏深度(或者是线圈与试件的间隙)的增加而降低。
为了提高探伤灵敏度就应尽量减少线圈与钢管之间的间隙,但是如果间隙太小会阻止钢管在线圈内自由通过,或者损坏线圈。
线圈与钢管之间间隙的大小可用穿过式线圈填充系数η来表示,它是试件截面积与测量线圈有效面积之比,通常认为η≥0.7 。
5、涡流探伤对检出缺陷的敏感性我国国家标准GB7735《钢管涡流探伤方法》是适用于锅炉、船舶、石油、化工等设备用圆形无缝钢管涡流探伤的标准。
标准规定对钢管作全表面探伤时,采用穿过式线圈,被探钢管的最大外径不大于180mm ,人工缺陷采用钻孔。
由于涡流探伤方法不是一种缺陷深度的绝对测量方法,而是一种相对检测方式,也就是对探伤结果的判定是借助于对比试样的人工缺陷与自然缺陷显示信号的幅度对比法即当量比较法来判定钢管缺陷。
人工缺陷形状分为两种,一种是穿过管壁并垂直于钢管表面的孔。
另一种是平行于钢管纵轴且侧边平行的槽口。
钻孔人工缺陷最能摸拟钢管表面的凹坑,短而严重的起皮以及横向裂纹等缺陷或伤痕,所以,用以代替水压试验的涡流探伤多采用钻孔人工缺陷。