光纤通信系统Optical Fiber Communications英文资料及中文翻译Communication may be broadly defined as the transfer of information from one point to another .When the information is to be conveyed over any distance a communication system is usually required .Within a communication system the information transfer is frequently achieved by superimposing or modulating the information on to an electromagnetic wave which acts as a carrier for the information signal .This modulated carrier is then transmitted to the required destination where it is received and the original information signal is obtained by demodulation .Sophisticated techniques have been developed for this process by using electromagnetic carrier waves operating at radio requites as well as microwave and millimeter wave frequencies.The carrier maybe modulated by using either optical an analog digital information signal.. Analog modulation involves the variation of the light emitted from the optical source in a continuous manner. With digital modulation, however, discrete changes in the length intensity are obtained (i.e. on-off pulses). Although often simpler to implement, analog modulation with an optical fiber communication system is less efficient, requiring a far higher signal to noise ratio at the receiver than digital modulation. Also, the linearity needed for analog modulation is mot always provided by semiconductor optical source, especially at high modulation frequencies .For these reasons ,analog optical fiber communications link are generally limited to shorter distances and lower bandwidths than digital links .Initially, the input digital signal from the information source is suitably encoded for optical transmission .The laser drive circuit directly modulates the intensity of the semiconductor last with the encoded digital signal. Hence a digital optical signal is launched into the optical fiber cable .The avalanche photodiode detector (APD) is followed by a front-end amplifier and equalizer or filter to provide gain as well as linear signal processing and noise bandwidth reduction. Finally ,the signal obtained isdecoded to give the original digital information .Generating a Serial SignalAlthough a parallel input-output scheme can provide fast data transfer and is simple in operation, it has the disadvantage of requiring a large number of interconnections. As an example typical 8 bit parallel data port uses 8 data lines, plus one or two handshake lines and one or more ground return lines. It is fairly common practice to provide a separate ground return line for each signal line, so an 8 bit port could typically use a 20 core interconnection cable. Whilst such a multi way cable is quite acceptable for short distance links, up to perhaps a few meters, it becomes too expensive for long distance links where, in addition to the cost of the multiword cable, separate driver and receiver circuits may be required on each of the 10 signal lines. Where part of the link is to be made via a radio link, perhaps through a space satellite, separate radio frequency channels would be required for each data bit and this becomes unacceptable.An alternative to the parallel transfer of data is a serial in which the states of the individual data bits are transmitted in sequence over a single wire link. Each bit is allocated a fixed time slot. At the receiving end the individual bit states are detected and stored in separate flip-flop stages, so that the data may be reassembled to produce a parallel data word. The advantage of this serial method of transmission is that it requires only one signal wire and a ground return, irrespective of the number of bits in the data word being transmitted. The main disadvantage is that the rate at which data can be transferred is reduced in comparison with a parallel data transfer, since the bits are dealt with in sequence and the larger the number of bits in the word, the slower the maximum transfer speed becomes. For most applications however, a serial data stream can provide a perfectly adequate data transfer rate . This type of communication system is well suited for radio or telephone line links, since only one communication channel is required to carry the data.We have seen that in the CPU system data is normally transferred in parallel across the main data bus, so if the input -output data is to be in serial form, then a parallel to serial data conversion process is required between the CPU data bus andthe external I/O line. The conversion from parallel data to the serial form could be achieved by simply using a multiplexed switch, which selects each data bit in turn and connects it to the output line for a fixed time period. A more practical technique makes use of a shift register to convert the parallel data into serial form.A shift register consists of a series of D type flip-flops connected in a chain, with the Q output of one flip-flop driving the D input of the next in the chain. All of the flip-flops ate clocked simultaneously by a common clock pulse, when the clock pulse occurs the data stored in each flip-flop is transferred to the next flip-flop to the right in the chain. Thus for each clock pulse the data word is effectively stepped along the shift register by one stage, At the end of the chain the state of the output flip-flop will sequence through the states of the data bits originally stored in the register. The result is a serial stream of data pulses from the end of the shift register.In a typical parallel to serial conversion arrangement the flip-flops making up the shift register have their D input switchable. Initially the D inputs are set up in a way so that data can be transferred in parallel from the CPU data bus into the register stages. Once the data word has been loaded into the register the D inputs are switched so that the flip-flops from a shift register .Now for each successive clock pulse the data pattern is shifted through the register and comes out in serial form at the right hand end of the register.At the receiving end the serial data will usually have to be converted back into the parallel form before it can be used. The serial to parallel conversion process can also be achieved by using a shift register .In this case the serial signal is applied to the D input of the stage at the left hand end of the register. As each serial bit is clocked into the register the data word again moves step by step to the right, and after the last bit has been shifted in the complete data word will be assembled within the register .At this point the parallel data may be retrieved by simply reading out the data from individual register stages in parallel It is important that the number of stages in the shift register should match the number of bits in the data word, if the data is to be properly converted into parallel form.To achieve proper operation of the receiving end of a serial data link, it isimportant that the clock pulse is applied to the receive shift register at a time when the data level on the serial line is stable. It is possible to have the clock generated at either end of the link, but a convenient scheme is to generate the clock signal at the transmitting end (parallel-serial conversion )as the master timing signal. To allow for settling time and delays along the line, the active edge of the clock pulse at the receive end is delayed relative to that which operates the transmit register. If the clock is a square wave the simples approach might be to arrange that the transmit register operates on the rising edge of the clock wave, and the receive register on the falling edge, so that the receiver operates half a clock period behind the transmitter .If both registers operate on arising edge, the clock signal from the transmitter could be inverted before being used to drive the receive shifty register.For an 8 bit system a sequence of 8 clock pulses would be needed to send the serial data word .At the receiving end the clock pulses could be counted and when the eighth pulse is reached it might be assumed that the data in the receive register is correctly positioned, and may be read out as parallel data word .One problem here is that, if for some reason the receive register missed a clock pulse ,its data pattern would get out of step with the transmitted data and errors would result. To overcome this problem a further signal is required which defines the time at which the received word is correctly positioned in the receive shift register and ready for parallel transfer from the register .One possibility is to add a further signal wire along which a pulse is sent when the last data bit is being transmitted, so that the receiver knows when the data word is correctly set up in its shift register. Another scheme might be to send clock pulses only when data bits are being sent and to leave a timing gap between the groups of bits for successive data words. The lack of the clock signal could then be detected and used to reset the bit counter, so that it always starts at zero at the beginning of each new data word.Serial and Parallel Data lion is processed. Serial indicates that the information is handled sequentially, similar to a group of soldiers marching in single file. In parallel transmission the info The terms serial and parallel are often used in descriptions of data transmission techniques. Both refer to the method by which information isdivided in to characters, words, or blocks which are transmitted simultaneously. This could be compared to a platoon of soldiers marching in ranks.The output of a common type of business machine is on eight—level punched paper tape, or eight bits of data at a time on eight separate outputs. Each parallel set of eight bits comprises a character, and the output is referred to as parallel by bit, serial by character. The choice of cither serial or parallel data transmission speed requirements.Business machines with parallel outputs, how—ever, can use either parallel outputs, how—ever, can use either direct parallel data trans—mission or serial transmission, with the addition of a parallel—to—serial converter at the interface point of the business machine and the serial data transmitter. Similarly, another converter at the receiving terminal must change the serial data back to the parallel format.Both serial and parallel data transmission systems have inherent advantages which are some—what different. Parallel transmission requires that parts of the available bandwidth be used as guard bands for separating each of the parallel channels, whereas serial transmission systems can use the entire linear portion of the available band to transmit data, On the other hand, parallel systems are convenient to use because many business machines have parallel inputs and outputs. Though a serial data set has the added converters for parallel interface, the parallel transmitter re—quires several oscillators and filters to generate the frequencies for multiplexing each of the side—by—side channels and, hence, is more susceptible to frequency error.StandardsBecause of the wide variety of data communications and computer equipment available, industrial standards have been established to provide operating compatibility. These standards have evolved as a result of the coordination between manufacturers of communication equipment and the manufacturers of data processing equipment. Of course, it is to a manufacturer’s advantage to provide equipment that isuniversally acceptable. It is also certainly apparent that without standardization intersystem compatibility would be al—most impossible.Organizations currently involved in uniting the data communications and computer fields are the CCITT, Electronic Industries Association (EIA), American Standards Association (ASA), and IEEE.A generally accepted standard issued by the EIA, RS—232—B, defines the characteristics of binary data signals, and provides a standard inter—face for control signals between data processing terminal equipment and data communications equipment. As more and more data communications systems are developed, and additional ways are found to use them, the importance ways are found to use them, the importance of standards will become even more significant.Of the most important considerations in transmitting data over communication systems is accuracy. Data signals consist of a train of pulses arranged in some sort of code. In a typical binary system, for example, digits 1 and 0 are represented by two different pulse amplitudes. If the amplitude of a pulse changes beyond certain limits during transmission, the detector at the receiving end may produce the wrong digit, thus causing an error.It is very difficult in most transmission systems to completely avoid. This is especially true when transmission system designed for speech signals. Many of the inherent electrical characteristics of telephone circuits have an adverse effect on digital signals.Making the circuits unsatisfactory for data transmission—especially treated before they can be used to handle data at speeds above 2000 bits per second.V oice channels on the switched (dial—up) telephone network exhibit certain characteristics which tend to distort typical data signal waveforms. Since there is random selection of a particular route for the data signal with each dialed connection, transmission parameters will generally change, sometimes upsetting the effect of built—in compensationNetworks. In addition, the switched network cannot be used of for large multipleaddress data systems using time sharing. Because of these considerations, specially treated voice bandwidth circuits are made available for data use. The characteristics and costs of these point—to—point private lines are published in document called tariffs, which are merely regulatory agreements reached by the FCC, state public utilities commissions, and operating telephone companies regarding charges for particular types of telephone circuits. The main advantage of private or dedicated facilities is that transmission characteristics are fixed and remain so for all data communications operations.Correlative TechniqueCorrelative data transmission techniques, particularly the Duobinary principle, have aroused considerable interest because of the method of converting a binary signal into three equidistant levels. This correlative scheme is accomplished in such a manner that the predetermined level depends on past signal history, forming the signal so that it never goes from one level extreme to another in one bit interval.The most significant property of the Duobinary process is that it affords a two—to—one bandwidth compression relative to binary signaling, or equivalently twice the speed capability in bits per second for a fixed bandwidth. The same speed capability for a multilevel code would normally require four levels, each of which would represent two binary digits.The FutureIt is universally recognized that communication is essential at every level of organization. The United States Government utilizes vast communications network for voice as well as data transmission. Likewise, business need communications to carry on their daily operations.The communications industry has been hard at work to develop systems that will transmit data economically and reliably over both private—line and dial up telephone circuits. The most ardent trend in data transmission today is toward higher speeds over voice—grade telephone channels. New transmission and equalization techniques now being investigated will soon permit transmitting digital data over telephone channels at speeds of 4800 bits per second or higher.To summarize: The major demand placed on telecommunications systems is for more information-carrying capacity because the volume of information produced increases rapidly. In addition, we have to use digital technology for the high reliability and high quality it provides in the signal transmission. However, this technology carries a price: the need for higher information-carrying capacity.The Need for Fiber-Optic Communications Systems The major characteristic of a telecommunications system is unquestionably its information-carrying capacity, but there are many other important characteristics. For instance, for a bank network, security is probably more important than capacity. For a brokerage house, speed of transmission is the most crucial feature of a network. In general, though, capacity is priority one for most system users. And there’s the rub. We cannot increase link capacity as much as we would like. The major limit is shown by the Shannon-Hartley theorem,Where C is the information-carrying capacity(bits/sec), BW is the link bandwidth (Hz=cycles/sec), and SNR is the signal-to-noise power ratio.Formula 1.1 reveals a limit to capacity C; thus, it is often referred to as the “ Shannon limit.” The formula, which comes from information theory, is true regardless of specific technology. It was first promulgated in 1948 by Claude Shannon, a scientist who worked at Bell Laboratories. R. V. L. Hartley, who also worked at Bell Laboratories, published a fundamental paper 20 years earlier, a paper that laid important groundwork in information theory, which is why his name is associated with Shannon’s formula.The Shannon-Hartley theorem states that information-carrying capacity is proportional to channel bandwidth, the range of frequencies within which the signals can be transmitted without substantial attenuation.What limits channel bandwidth? The frequency of the signal carrier. The higher the carrier’s frequency, the greater the channel bandwidth and the higher the information-carrying capacity of the system. The rule of thumb for estimating possible order of values is this: Bandwidth is approximately 10 percent of the carrier-signal frequency. Hence, if a microwave channel uses a 10-GHz carrier signal.Then its bandwidth is about 100 MHz.A copper wire can carry a signal up to 1 MHz over a short distance. A coaxial cable can propagate a signal up to 100 MHz. Radio frequencies are in the range of 500 KHz to 100 MHz. Microwaves, including satellite channels, operate up to 100 GHz. Fiber-optic communications systems use light as the signal carrier; light frequency is between 100 and 1000 THz; therefore, one can expect much more capacity from optical systems. Using the rule of thumb mentioned above, we can estimate the bandwidth of a single fiber-optic communication link as 50 THz.To illustrate this point, consider these transmission media in terms of their capacity to carry, simultaneously, a specific number of one-way voice channels. Keep in mind that the following precise value. A single coaxial cable can carry up to 13,000 channels, a microwave terrestrial link up to 20,000 channels, and a satellite link up to 100,000 channels. However, one fiber-optic communications link, such as the transatlantic cable TAT-13, can carry 300,000 two-way voice channels simultaneously. That’s impressive and explains why fiber-optic communications systems form the backbone of modern telecommunications and will most certainly shape its future.To summarize: The information-carrying capacity of a telecommunications system is proportional to its bandwidth, which in turn is proportional to the frequency of the carrier. Fiber-optic communications systems use light-a carrier with the highest frequency among all the practical signals. This is why fiber-optic communications systems have the highest information-carrying capacity and this is what makes these systems the linchpin of modern telecommunications.To put into perspective just how important a role fiber-optic communications will be playing in information delivery in the years ahead, consider the following statement from a leading telecommunications provider: “ The explosive growth of Internet traffic, deregulation and the increasing demand of users are putting pressure on our customers to increase the capacity of their network. Only optical networks can deliver the required capacity, and bandwidth-on-demand is now synonymous with wavelength-on-demand.” Th is statement is true not only for a specific telecommunications company. With a word change here and there perhaps, but withthe same exact meaning, you will find telecommunications companies throughout the world voicing the same refrain.A modern fiber-optic communications system consists of many components whose functions and technological implementations vary. This is overall topic of this book. In this section we introduce the main idea underlying a fiber-optic communications system.Basic Block DiagramA fiber-optic communications system is a particular type of telecommunications system. The features of a fiber-optic communications system can be seen in Figure 1.4, which displays its basic block diagram.Information to be conveyed enters an electronic transmitter, where it is prepared for transmission very much in the conventional manner-that is, it is converted into electrical form, modulated, and multiplexed. The signal then moves to the optical transmitter, where it is converted into optical detector converts the light back into an electrical signal, which is processed by the electronic receiver to extract the information and present it in a usable form (audio, video, or data output).Let’s take a simple example that involves Figures 1.1, 1.3, and 1.4 Suppose we need to transmit a voice signal. The acoustic signal (the information) is converted into electrical form by a microphone and the analog signal is converted into binary formby the PCM circuitry. This electrical digital signal modulates a light source and the latter transmits the signal as a series of light pulses over optical fiber. If we were able to look into an optical fiber, we would see light vary between off and on in accordance with the binary number to be transmitted. The optical detector converts the optical signal it receives into a set of electrical pulses that are processed by an electronic receiver. Finally, a speaker converts the analog electrical signal into acoustic waves and we can hear sound-delivered information.Figure 1.4 shows that this telecommunications system includes electronic components and optical devices. The electronic components deal with information in its original and electrical forms. The optical devices prepare and transmit the light signal. The optical devices constitute a fiber-optic communications system.TransmitterThe heart of the transmitter is a light source. The major function of a light source is to convert an information signal from its electrical form into light. Today’sfiber-optic communications systems use, as a light source, either light-emitting diodes (LEDs) or laser diodes (LDs). Both are miniature semiconductor devices that effectively convert electrical signals are usually fabricated in one integrated package. In Figure 1.4, this package is denoted as an optical transmitter. Figure 1.5 displays the physical make-up of an LED, an LD, and integrated packages.Optical fiberThe transmission medium in fiber-optic communications systems is an optical fiber. The optical fiber is the transparent flexible filament that guides light from a transmitter to a receiver. An optical information signal entered at the transmitter end of a fiber-optic communications system is delivered to the receiver end by the optical fiber. So, as with any communication link, the optical fiber provides the connection between a transmitter and a receiver and, very much the way copper wire and coaxial cable conduct an electrical signal, optical fiber “ conducts” light.The optical fiber is generally made from a type of glass called silica or, less commonly nowadays, from plastic. It is about a human hair in thickness. To protect very fragile optical fiber from hostile environments and mechanical damage, it is usually enclosed in a specific structure. Bare optical fiber, shielded by its protective coating, is encapsulated use in a host of applications, many of which will be covered in subsequent chaptersReceiver The key component of an optical receiver is its photodetector. The major function of a photodetector is to convert an optical information signal back into an electrical signal (photocurrent). The photodetector in today's fiver-optic communications systems is a semiconductor photodiode (PD). This miniature device is usually fabricated together with its electrical circyitry to form an integrated package that provides power-supply connections and signal amplification. Such an integrated package is shown in Figure 1.4 as an optical receiver. Figure 1.7 shows samples of a photodiode and an integrated package.The basic diagram shown in Figure 1.4 gives us the first idea of what a fiber-optic communications system is and how it works. All the components of this point-to-point system are discussed in detail in this book. Particular attention is given to the study of networks based on fiber-optic communications systems.The role of Fiber-Optic Communications Technology has not only already changed the landscape of telecommunications but it is still doing so and at a mind-boggling pace. In fact, because of the telecommunications industry's insatiable appetite for capacity, in recent years the bandwidth of commercial systems has increased more than a hundredfold. The potential information-carrying capacity of a single fiber-optic channel is estimated at 50 terabits a second (Tbit/s) but, from apractical standpoint, commercial links have transmitted far fewer than 100 Gbps, an astoundingamount of data in itself that cannot be achieved with any other transmission medium. Researchers and engineers are working feverishly to develop new techniques that approach the potential capacity limit.Two recent major technological advances--wavelength-division multiplexing (WDM) anderbium-doped optical-fiber amplifiers (EDFA)--have boosted the capacity of existing system sand have brought about dramatic improvements in the capacity of systems now in development. In fact,' WDM is fast becoming the technology of choice in achieving smooth, manageable capacity expansion.The point to bear in mind is this: Telecommunications is growing at a furious pace, and fiber-optic communications is one of its most dynamically moving sectors. While this book refleets the current situation in fiber-optic communications technology, to keep yourself updated, you have to follow the latest news in this field by reading the industry's trade journals, attending technical conferences and expositions, and finding the time to evaluate the reams of literature that cross your desk every day from companies in the field.光纤通信系统一般的通信系统由下列部分组成:(1) 信息源。