全国电子专业人才设计与技能大赛电子组装、调试与开发大赛---------传感元器件1.NTC 负温度系数热敏电阻热敏电阻分为三类:正温度系数热敏电阻(PTC ),负温度系数热敏电阻(NTC ),临界温度电阻器(CTR )。
图1-39 NTC 负温度系数热敏电阻负温度系数热敏电阻器如图1-39所示。
其电阻值随温度的增加而减小。
NTC 热敏电阻器在室温下的变化范围在10O ~1000000欧姆,温度系数-2%~-6.5%。
⑴ 负温度系数热敏电阻温度方程)(T f =ρ T B T e A /'=ρ T B T B TT Ae e S l A S l R //'===ρ 其中:l A A '=该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数B 本身也是温度 T 的函数。
NTC 热敏电阻器在室温下的变化范围在10O ~1000000欧姆,温度系数-2%~-6.5%。
已知温度T 、额定温度T N 和R25即可求的热敏电阻阻值R T 。
⑵ 负温度系数热敏电阻主要特性电阻温度系数σdTdR R T T 1=σ 微分式(),可得 2T B -=σ 热敏电阻的温度系数是负值。
-----温度测量电桥应用 温度测量电桥的A 点所在的桥臂的电阻是固定的,故A U 是固定的。
B 点所在的桥臂的电阻t R 随温度变化,故B U 是变动的。
电阻t R 为负温度系数热敏电阻,t R =1.5K 指NTC 热敏电阻的标称电阻值R25。
为了方便取2R 与t R 成比例,这里取K R R t 5.12==,同时,1311212E E R R R A U =+=,得Ω=7501R 。
在前面已知条件下,推导13’3P R R R +=: 约束条件:① U U U U U B A i ∆〈+-=〈∆-,② 131E A U =。
由测量电桥平衡0=-=B A i U U U 时,得Ω==+=750113’3R R R R P 。
又由1'31131E R t R t R E U U U B A i +-=-=,得R p R R R ∆±Ω=+=75013'3。
故取K R P 11=。
温度控制电路如图3-15所示,由测量电桥、测量放大器、滞回比较器及驱动电路等组成。
由于温度的不同,因而在测量电桥的A 、B 点时会产生不同的电压差,这个差值经过测量放大器放大后进入到滞回比较器的反相输入端,与比较电压U R 比较后,由滞回比较器输出信号进行加热或停止加热。
⑴ 温度控制器电路温度控制器电路如图3-7所示。
图3-7 温度控制器电路⑵ 电路原理分析由测量电桥、测量放大器、滞回比较器及驱动电路等组成。
测量电桥的A 点所在的桥臂的电阻是固定的,故A U 是固定的。
B点所在的桥臂的电阻t R 随温度变化,故B U 是变动的。
由于温度的不同,因而在测量电桥的A 、B 点时会产生不同的电压差,这个差值经过测量放大器放大后进入到滞回比较器的反相输入端,与比较电压U R 比较后,由滞回比较器输出信号进行加热或停止加热。
继电器J 可进一步推动交流接触器。
滞回电压比较器的比较电压U R 代表设定的温度,如图3-7示,o R TH U R R R U R R R U ⨯++⨯+=131212131213。
由滞回电压比较器特性可知,当E U 变化越过TH U 时,滞回电压比较器输出会翻转。
改变比较电压U R 能改变控温的范围,控温的精度由滞回比较器的滞环宽度确定。
比较电压U R 与温度t R 的关系:om R TH U R R R U R R R U ⨯++⨯+=131212131213)()(1'31211131212131213E R R R E R R R A U U A AU U R R R U R R R U t t B A AB om R E +-+=-==⨯++⨯+= 令1211'1E R R R AE +=,131312R R R m +=; 整理得:1'3'31312'113121'3'111E R R R mA U R R mE U R R E R R R mA mE U tom om t tR +--=-+-= (3-10) 由式(3-10)可知,比较电压U R 与温度t R 存在对应关系。
温度t ↑,t R ↓,使B U ↓,而B A U U -↑。
经测量放大器的放大,E U ↑,当温度由0t 上升到达2t (与U R 对应),即温度t 到达设定值2t ,滞回比较器输出信号F U 使驱动电路复合管截止,继电器J 失电,停止加温。
温度t ↓,t R ↑,使B U ↑,而B A U U -↓。
经测量放大器的放大,E U ↓,当温度下降达2t (与U R 对应),即温度t 下降低于设定值2t ,滞回比较器输出信号F U 使驱动电路复合管导通,继电器J 得电,进行加温。
2.热释电红外线传感器普通人体会发射10μm 左右的特定波长红外线,用专门设计的传感器就可以针对性的检测这种红外线的存在与否。
当人体红外线照射到传感器上后,因热释电效应将向外释放电荷,后续电路经检测、放大、处理后就能产生控制信号。
如图1-39所示,这种专门设计的探头只对波长为10μm 左右的红外辐射敏感,所以除人体以外的其他物体不会引发探头动作。
探头内包含两个互相串联或并联的热释电元,而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。
一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,于是输出检测信号。
为了增强敏感性并降低白光干扰,通常在探头的辐射照面覆盖有特殊的菲泥尔滤光透镜,菲泥尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。
传感器的光谱范围为1~10μm ,中心为6μm ,均处于红外波段,是由装在TO-5型金属外壳的硅窗的光学特性所决定。
主要参数:工作电压 2.2~15V ;工作电流 8.5~24μA ;视场 139°×126°红外热释电传感器管脚图如图1-40所示,它是一种检测人体发射红外线而输出电信号的传感器。
图1-40 红外热释电传感器管脚图菲涅尔透镜是由聚烯烃材料注压而成的薄片,镜片表面一面为光面,另一面刻录了由小到大的同心圆,它的纹理是利用光的干涉及扰射和根据相对灵敏度和接收角度要求来设计的,透镜的要求很高,一片优质的透镜必须是表面光洁,纹理清晰,其厚度一般在 1mm 左右,特性为面积较大,厚度薄及侦测距离远菲涅尔透镜作用有两个:一是聚焦作用,即将热释红外信号折射(反射)在PIR上,第二个作用是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变化的形式在PIR上产生变化热释红外信号。
⑴红外热释电传感器应用电路:①基本工作原理功能:利用热释电红外器件直接探测来自移动的生物体的红外辐射。
图为使用SD02型热释电人体红外传感器组成的放大检测电路。
电路使用LM324四运放分别构成IC(A)、IC(B)两级高倍放大器,SD02检测到的人体红外线微弱信号后,从2脚输出极微弱的电信号输入到同相放大器IC(A),再从1脚输出一定幅度的信号,再经电容C6耦合到反相放大器IC(B)进一步放大,放大倍数约2500。
为适应热释电人体红外传感器的负载能力,要求高输入阻抗的放大器,故采用同相放大器。
IC(C)、IC(D)构成窗口比较器,当IC(B)电压幅度在UA到UB之间时,IC(C)、IC (D)均无输出;当IC(B)输出电压大于UA时,IC(C)输出高电平;当IC(B)输出电压小于UB时,IC(D)输出高电平,经D1、D2隔离后分别输出,以控制后续报警及控制电路。
R11用于设定窗口的阈值电平,调节R11可调节检测器的灵敏度。
当有人在热释电检测电路的有效范围内走动时,将引起LED1和LED2的交替闪烁。
电路中,运放LM324无论是作放大器还是比较器,都采用了单电源。
在传感器无信号时,IC(A)的静态输出电压为0.4V~1V左右;IC(B)在静态时,由于同相端电位为2.5V,故直流输出电平为2.5V;而两个比较器IC(C)和(D)的基准电位则由电阻R10、R11和R12的大小确定。
②电路组装要求Ⅰ. 按图电路组装。
实验室试验时,不必加菲涅耳透镜,直接用SD02检测人体运动。
将手臂在传感器前移动,观察两只发光二极管点亮与熄灭的对应情况,分析检测电路的工作状态。
Ⅱ. 如电路不工作,可由前至后逐级测量各级输出端有无变化的电压信号,以判断电路及各级工作状态,排除故障(检测时注意PY的预热时间)。
⑵课堂作业①电路中电容C4、C5的作用是什么?电容C1和C8的作用是甚么?去掉C1和C8对传感器信号有否影响?请试一试。
②②对电路适当接续,组成自动报警,发出"有电危险,请勿靠近"的语音,语音集成电路的使用方法参见第二单元课题三语音提示和告警电路。
⑶课外制作与阅读①为防止电路在实际应用时频繁动作,请用时基电路555设计一个延时触发电路,要求当传感器检测到人体信号时,5秒后执行控制动作。
②3.超声波和超声波传感器超声波传感器是利用超声波的特性研制而成的传感器,用来测量物体的距离。
首先,超声波传感器会发射一组高频声波,一般为40-45KHz,当声波遇到物体后,就会被反弹回,并被接受到。
通过计算声波从发射到返回的时间,再乘以声波在媒介中的传播速度(344米/秒,空气中),就可以获得物体相对于传感器的距离值了。
超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。
超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。
构成晶片的材料可以有许多种。
晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的。
超声波传感器的主要性能指标包括:(1)工作频率。
工作频率就是压电晶片的共振频率。
当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。
(2)工作温度。
由于压电材料的居里点一般比较高,特别是诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不失效。
医疗用的超声探头的温度比较高,需要单独的制冷设备。
(3)灵敏度。
主要取决于制造晶片本身。
机电耦合系数大,灵敏度高;反之,灵敏度低。
1.超声波发射电路发射电路主要由U1(74LS04/CD4069)和超声波发生换能器组成,单片机端口P3.4输出40KHz 方波信号一路经一级反向器后送超声波发生换能器T的一个电极,另一路经两级反向器后送超声波发生换能器T的另一个电极。