微生物生理学总结第二章微生物的结构和功能微生物生理学:是微生物学的分支学科,是从生理生化的角度研究微生物细胞的形态学结构和功能、新陈代谢、生长繁殖等微生物生命活动规律的学科。
细胞结构革兰氏阳性菌细胞壁:由肽聚糖和磷壁酸组成革兰氏阴性菌细胞壁外壁层:位于肽聚糖层的外部。
类脂A脂多糖: 核心多糖o-特异侧链包括: 脂蛋白蛋白质层: 基质蛋白外壁蛋白磷脂.内壁层:紧贴胞膜,仅由1-2层肽聚糖分子构成,占细胞壁干重5— 10%,无磷壁酸。
细胞壁的基本骨架——肽聚糖肽聚糖:是由 N—乙酰胞壁酸(NAM)和N—乙酰葡糖胺(NAG)以及少数氨基酸短肽链组成的亚单位聚合而成的大分子复合体。
肽聚糖单体:是由NAG 、 NAM 、肽尾、肽桥构成。
青霉素(D-丙氨酰-D-丙氨酸的结构类似物,两者互相竞争转肽酶的活性中心):作用于肽聚糖肽桥的联结,即抑制肽聚糖的合成,故仅对生长着的菌有效,主要是G+菌。
革兰氏染色原理:G+ 菌:细胞壁厚,肽聚糖含量高,交联度大,当乙醇脱色时,肽聚糖因脱水而孔径缩小,故结晶紫-碘复合物被阻留在细胞内,细胞不能被酒精脱色,仍呈紫色。
Gˉ菌:肽聚糖层薄,交联松散,乙醇脱色不能使其结构收缩,因其含脂量高,乙醇将脂溶解,缝隙加大,结晶紫-碘复合物溶出细胞壁,酒精将细胞脱色,细胞无色,沙黄复染后呈红色。
古细菌细胞壁没有肽聚糖、胞壁酸和D-氨基酸,含有假太聚糖骨架是以β-1,3糖苷键交替连接而成,缺壁细菌原生质体:用青霉素等抗生素或者溶菌酶处理G+菌而得到的去壁完整的球形体。
原生质球:用青霉素等抗生素或溶菌酶处理G-细菌而得到的去壁不完全的近球形体。
L型细菌:某些细菌在特定环境条件下因基因突变而产生的无壁类型。
在一定条件下L 型细菌能发生回复突变而恢复为有壁的正常细菌。
支原体:在进化过程中天生无壁的原核微生物。
细胞质膜;:要由磷脂双分子层和蛋白质构成。
细菌细胞与真核细胞的质膜很相似,但不含胆固醇等甾醇细胞质及其内含物细胞质:是在细胞膜内除核区以外的一切半透明、胶体状、颗粒状物质的总称。
内含物❖贮藏物:1、异染粒:是普遍存在的贮藏物,主要成分是多聚偏磷酸盐。
功能:贮存磷元素和能量,降低渗透压。
多聚偏磷酸盐对某些染料有特殊反应,产生与所用染料不同的颜色,因此得名异染颗粒.例:异染粒遇甲基胺蓝变紫红色. 含异染粒的细菌种类:棒状杆菌和某些芽孢杆菌等.2、聚β-羟丁酸颗粒是许多细菌细胞质内常含有的碳源类储藏物.PHB不溶于水,易被脂溶性染料(如苏丹黑)着色。
功能:贮存碳源、能源和降低渗透压。
多好氧菌和光合厌氧菌都含有聚β-羟丁酸颗粒3、硫粒:是硫元素的贮藏体形成:取决于环境硫化物含量,当环境中S含量高时,在体内积累;当缺S时,氧化成硫酸被菌利用。
功能:a.好氧硫细菌的能源b.厌氧硫细菌的电子供体4、藻青素:通常存在于蓝细菌中,是一种内源性氮源储藏物,同时兼有储存能源的作用。
❖载色体:是光合细菌进行光合作用的部位,相当于绿色植物的叶绿体。
主要化学成分是蛋白质和脂类。
❖核糖体:是细胞中的一种核糖蛋白质的颗粒状结构,有65%的核糖酸和35%的蛋白质组成。
❖质粒:是一种独立于染色体之外的能进行自主复制的细胞质遗传因子。
❖磁小体:在水生螺旋菌属和嗜胆球菌属的细菌中含有磁小体,它含有磁铁矿形式的铁,被细菌用于在地球磁场中定位。
❖羧酶体:自养细菌所特有的内膜结构。
羧酶体中含有自养生物所特有的5-磷酸核酮糖激酶和1,5-二磷酸核酮糖羧化酶,这两种酶是卡尔文循环中固定CO2的关键性酶类,通过卡尔文循环,使自养菌与异养菌一样含有了磷酸己糖。
一些光合细菌,如蓝细菌以及化能自养菌如硝化杆菌科细胞中均具有羧酶体。
❖气泡:由蛋白质膜构成的充满气体的泡状物。
有些细菌细胞质中含有几个或多个气泡❖芽孢:具有很强的抗热、抗干燥、抗辐射、抗化学药物能力,含水量低、壁厚而致密、通透性差、不易着色,新陈代谢几乎停止,处于休眠体状态,芽胞是休眠体,不是繁殖体。
芽胞抗热机制:渗透调节皮层膨胀学说;耐热性物质DAP-Ca的存在细胞壁以外构造糖被:包被于某些细节细胞壁以外的一层厚度不定的胶状物质。
分类:荚膜、微荚膜、粘液层、菌胶团鞭毛:由螺旋丝、钩型鞘、基体构成。
菌毛:菌毛又称纤毛、伞毛、线毛或须毛,是一种长在细菌体表的纤细、中空、短直且数量较多的蛋白质类附属物,具有使菌体附着于物体表面上的功能。
性菌毛:构造和成分与菌毛相同,但比菌毛长,且每个细胞只有一至数根。
一般多见于G﹣细菌的供体菌中,具有向受体菌传递遗传物质的作用。
真核微生物第三章微生物的营养与物质运输营养:微生物获得和利用营养物质的过程六大养要素;碳源氮源、能源、生长因子、无机盐和水1,物质的跨膜运输分为单纯扩散、促进扩散、主动运输、基团转移2膜泡运输第四章异养微生物的生物氧化.自由能:在热力学中,系统减少的能量能转化成对外做的功,能用于做工的能量称为自由能。
EMP途径特点:1. 葡萄糖分解是从1,6-二磷酸果糖开始的2. 整个途径中①③⑩步反应是不可逆的3. EMP途径的特征酶是1,6-二磷酸果糖醛缩酶,首先脱羧部位C3,C4。
4.整个途径不消耗分子氧5. EMP途径的有关酶位于细胞质中6. 总反应式:C6H12O6 + 2NAD+ + 2ADP + 2Pi 2CH3COCOOH + 2NADH + 2H+ + 2ATPEMP途径的意义:①供应ATP和NADH②连接其他几个代谢途径的桥梁③为生物合成提供多种中间代谢物④通过逆向反应可以进行多糖的合成HMP途径意义:1、为核苷酸和核酸的生物合成提供戊糖-磷酸。
2、产生大量NADPH,一方面为脂肪酸、固醇等物质的合成提供还原力,另方面可通过呼吸链产生大量的能量。
3、与EMP途径在果糖-1,6-二磷酸和甘油醛-3-磷酸处连接,可以调剂戊糖供需关系。
4、途径中的赤藓糖、景天庚酮糖等可用于芳香族氨基酸合成、碱基合成、及多糖合成。
5、途径中存在3-7碳的糖,扩大碳源利用范围。
6、通过该途径可产生许多种重要的发酵产物。
如核苷酸、若干氨基酸、辅酶和乳酸(异型乳酸发酵)等。
ED途径:①碳架结构的变化②特征酶:KDPG醛缩酶(2-酮-3-脱氧-6-磷酸葡萄糖酸醛缩酶)③分布:主要存在于G-菌中,如一些假单胞菌和固氮菌WD途径①碳架结构变化:a. PK途径, b. HK途径。
②特点:特征酶为磷酸解酮酶③生理意义:a. 仅分布在少数细菌中, b. PK途径为戊糖分解的重要途径, c. HK途径为己糖分解的重要途径。
代表菌株:PK---肠膜明串珠菌HK---双歧杆菌葡萄糖直接氧化途径特征酶:葡萄糖氧化酶特点: a. 不需要激酶,但需要葡萄糖氧化酶;b. 需要氧气,c. 终产物为酮基葡萄糖酸。
分布菌群:假单胞菌、醋杆菌属、气杆菌属及许多真菌生物氧化中的发酵:是指无氧条件下,底物脱氢后所产生的还原力不经过呼吸链传递而直接交给一内源氧化性中间代谢产物的一类低效产能反应。
工业上的发酵::是指任何利用厌氧或好氧微生物来生产有用代谢产物的一类生产方式。
酵母乙醇发酵:一型发酵(乙醇发酵):EMP途径产生2个丙酮酸,在丙酮酸脱羧酶作用下生成乙醛。
在醇脱氢酶和NADH作用下,乙醛被还原成乙醇。
(pH4.5-3.5)二型发酵(甘油发酵):在3%的NaHSO3时,产物为甘油和乙醇三型发酵(甘油发酵):在pH7.6时,产物为乙醇、乙酸和甘油高渗发酵细菌的同型乙醇发酵(发酵单胞菌、厌氧发酵单胞菌):ED途径分解葡萄糖为丙酮酸,丙酮酸脱羧生成乙醛,乙醛被还原成乙醇。
细菌的异型乙醇发酵(八叠球菌和兼性厌氧肠杆菌):通过EMP途径产生乙醇、乳酸等乳酸发酵:指乳酸菌将葡萄糖分解产生的丙酮酸逐渐还原成乳酸的过程1. 同型乳酸发酵:菌群:大多数乳酸杆菌属、链球菌属途径:葡萄糖经EMP途径降解成丙酮酸,在乳酸脱氢酶作用下被NADH还原成乳酸。
C6H12O6+2ADP + 2Pi —— 2CH3CHOHCOOH + 2ATP2. 异型乳酸发酵:菌群:肠膜明串珠菌和葡聚糖明串珠菌途径:通过PK途径进行,发酵产物除了乳酸外还有一部分乙醇和CO2。
C6H12O6+ADP + Pi —— CH3CHOHCOOH + CH3CH2OH + CO2 + ATP3. 双歧乳酸发酵:菌群:双歧杆菌途径:通过HK途径进行,反应中两种酶参加,6-磷酸果糖解酮酶和5-磷酸木酮糖解酮酶。
2C6H12O6+5ADP + 5Pi 2CH3CHOHCOOH + 5ATP +3CH3CHOOH丙酸发酵菌群:丙酸杆菌途径:经EMP生成2分子丙酮酸,一分子氧化生成乙酸和CO2,另一分子经羧化生成草酰乙酸、转化为琥珀酸,经甲基丙二酰CoA,最后经脱羧和转辅酶A反应生成丙酸呼吸作用:是指生物(包括动物、植物和微生物)分解体内复杂的有机物,并同时释放能量的过程。
有氧呼吸1. 葡萄糖有氧分解途径①糖酵解②丙酮酸脱羧生成乙酰CoA ③TCA循环④在电子传递链中,NADH和FADH2被氧化产生能量,合成大量ATP一次TCA循环可以产生15分子ATP,微生物完全氧化葡萄糖过程中可得到38分子ATP,氧不直接参加反应,但没有氧不能运转。
三个关键酶,柠檬酸合成酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶。
呼吸:底物脱下的氢经完整的呼吸链传递,最终交给分子氧而产生水并释放出ATP的生物氧化。
呼吸的过程除脱氢过程外,还包括电子传递链部分反应,递氢和受氢过程都要氧气的参与。
呼吸链:位于原核生物的细胞膜上或真核生物线粒体膜上的氧化还原势呈梯度差的链状排列的氢(或电子)传递顺序。
无氧呼吸①定义:一类呼吸链末端的氢受体为外源无机氧化物(个别为有机氧化物)的生物氧化,是一种无氧条件下进行的产能效率较低的特殊呼吸。
②特点:底物脱下的氢只经过部分的呼吸链传递给氧化态的无机物或有机物。
底物水平磷酸化:物质在生物氧化过程中,常生成一些含有高能键的化合物,而这些化合物可直接偶联ATP或GTP的合成。
这种产生ATP等高能分子的方式称为底物水平磷酸化。
特点:既存在于发酵过程中也存在于呼吸过程中。
是微生物发酵产生ATP的重要方式(厌氧条件)。
氧化过程中脱下的氢和电子不经过传递链,通过酶促反应直接交给基质本身氧化产物。
氧化磷酸化①定义:指呼吸链递氢和受氢过程与磷酸化偶联并产生ATP的作用②动力:质子动势,即[H+]的浓度差③氧化磷酸化合成ATP的机制-----化学渗透学说。
通过呼吸链上有关的酶系的作用,可将底物分子上的质子从膜内泵到膜外,从而造成膜内外质子浓度差即质子动势,为ATP 的合成提供能量.ATP酶的逆反应可以把质子从膜的外侧泵到膜的内侧,于是在消除质子动势的同时合成了ATP。
氧化磷酸化的解偶联和抑制:⑴电子传递抑制剂:阻断呼吸链中某部位电子传递。