电动汽车双轮驱动差速控制摘要电动汽车优于传统内燃机汽车并不仅仅在于能源的更替,性能上更具提高的空间,多电机驱动是电动汽车获得更好性能的有效途径之一。
该文是以无刷双馈电机牵引的双轮驱动电动汽车为研究对象,对双轮无刷双馈电机牵引控制进行了较为透彻的研究和分析。
该论文主要研究的方向如下:首先,对无刷双馈电机控制性能进行了深入的分析和仿真研究,针对电动汽车的驱动要求的优势,首次提出以无刷双馈电机作为双轮驱动电动汽车的牵引动力,并针对无刷双馈电机驱动系统存在的亚同步区控制绕组能量回流问题。
仿真结果表明:无刷双馈驱动具有动态响应快、起动、制动、加速、减速各工况下能量分配灵活、高速运行能力强的优点,另外一个更显著的有点是当逆变器不可使用时,电机可当做感应电机。
其次,依照双馈电机结构、控制的特殊性,提出一种结构简单的双轮驱动电动汽车无刷双馈电机级联差速控制结构,该结构成本低,更充分的发挥了双馈输入的优势。
关键词:电动汽车;双轮驱动;无刷双馈电机;差速控制AbstractElectric vehicle (EV) is superior to the traditional internal combustion engine vehicle, not only in energy replacement, but also in the more space of performance improvement, multi-motor drive is an effective way to get better performance for electric vehicle. The EV which is drived by double BDFM(Brushless Double Feed Motor) is taken as an object in this dissertation, which analyses and studies traction control.Mainly research works of the dissertation are as follows.First of all, the performance control of the DTC system of the BDFM are analysed and simulated in the dissertation, BDFM is first purposed to be the drive source for EV with the advantage.To solve the problem of the control winding current feedback in the sub-synchronous area of the BDFM control system. The simulation shows, the advantage of brushless doubly-fed driver is fast dynamic response, flexible energy distribution under the condition of starting, braking, accelerating, decelerating, excellent ability of high speed operation. When one set of inverter breakdown, BDFM also can run as an induction motor, for the EV run in field works.Second, according to the specific characteristic of BDFM’s structure, control and energy transfer, a BDFM differential cascade system in two-wheel drive EV is proposed in the dissertation, which costs low, takes more advantage of double-fed input and energy natural distributing in steering and efficiently.Keywords:Electric Vehicle;Two-wheel Drive;Brushless Doubly-fed Machine;Differential Control目录摘要 (I)Abstract ............................................................................................................................... I I 1绪论................................................................................................................................ I II1.1课题背景及选题意义 (1)1.2电动汽车的发展概况 (1)1.2.1国外发展现状 (1)1.2.2国内发展现状 (2)1.3多电机驱动电动汽车控制技术 (3)1.4 主要研究工作 (3)2 无刷双馈电机运行的基本原理 (5)3无刷双馈电机牵引控制策略 (8)3.1无刷双馈电机直接转矩控制 (8)3.2基于控制绕组电流最小化直接转矩控制策略 (9)3.3牵引系统仿真 (12)4无刷双馈电机双轮差速控制原理与结构 (17)4.1双轮驱动电动汽车的转向模型 (17)4.2双馈级联差速结构 (19)4.3双馈独立驱动差速结构 (20)5双轮驱动无刷双馈差速系统仿真分析 (21)5.1双轮驱动双馈级联差速系统仿真 (21)5.2双轮无刷双馈电机独立驱动差速系统仿真 (24)结论 (27)致谢 (29)参考文献 (30)1绪论1.1课题背景及选题意义电动汽车,如清洁能源,节能,低噪音和能源多样化,是公认的解决未来能源问题和环境问题的最有效的工具之一,在世界上,各国政府,企业和科研机构的所有国家的关注。
中国电动汽车的技术水平与发达国家相差不大,而目前的格局是一种罕见的为中国汽车制造业的发展机会,并加强研究和开发,以生产出达到当代国际水平并具有自主知识产权的电动汽车,是国家的利益所在。
电动汽车最明显的优势是快速准确的转矩控制,如果不能充分利用这点,电动汽车的性能难以在与其他新能源汽车的竞争中获得绝对优势(如在能源消耗方面,柴油混合动力汽车会更低)。
通过实现和超越传统内燃机性能的智能控制的电动汽车电机驱动系统,不仅只是在简单的动力源替换,尤其是配备多个电机的电动车。
由于其特殊的布置形式而在提高汽车操纵稳定性方面具有令人瞩目的潜力[1-2]。
在本文中,采用双电机前轮的电机进行了研究。
无刷双馈电机作为驱动电机,并分别对驱动系统结构及电机牵引、汽车操纵稳定性控制、差速控制策略问题进行深入的研究。
本论文一方面研究电动汽车无刷双馈电机牵引控制问题,提出针对性地控制结构与控制策略,另一方面以提高操纵稳定性为目的,研究两个牵引电机的协同控制,研究成果既具有理论意义亦有工程应用的可能。
1.2电动汽车的发展概况1.2.1国外发展现状从1970年起,发达国家已经在商业开发和应用电动汽车方面投入了巨资。
到20世纪90年代,美洲和欧洲国家都相继制定并严格执行[3]关于汽车尾气排放标准。
在美国大力发展纯电动汽车需要很长的时间,需要的投资也非常大。
早在1991年,在美国创建了先进的电池联盟是由三大汽车公司共同签署了一项协议而成立的,这个联盟是共同合作和研发汽车电池去供应电动型汽车。
在1990年初,为了发展ev-i型纯电动汽车美国通用汽车公司投资近10忆美元,这种汽车车大容使用铅酸电池和镍氢电池,具有137马力、3相交流感应电动机驱动,最大的时速可高达80km/h,一次性充电可行驶的里程为75~130km,完整的充电时间为5.5~6h。
之后通用公司新建设了电动汽车生产线。
2002年福特公司在市面上推出了全新的THINK都市车。
这种汽车采用了前轮驱动,运用的是交流电的控制系统和单速齿轮减速传动装置,还有别的充电设备可以选择,在内的插入式充电器为标准配置分别为110V或220V,220V的充电设备可以在6~8h 之内将电池充满[4-9]。
在日本,电动汽车已受到各个领域的关注,日本在1997年后的一些制造商就开始销售第二代纯电动型汽车,这种汽车装配了镍氢和铿离子电池。
在近20世纪末,日本的丰田公司研发出了装备RA V-4EV型纯电动轿车,这种汽车的动力装配是一台不用维修护理的功率为50kw的交流同步电动机,汽车的电力的支持是由88V镍氢电池供给的,充电的时间为5~6h,最高的速度是125km/h,通过一次性充电能行驶的距离215km。
随后日产公司成功的研制出一款采用铿离子电池为主动力的Lunnet EV五座纯电动轿车,一次性充电可行驶多达230km并且最高车速为120km/h。
闪耀在第16届国际电动车展会上的新型电动车—“Prius”,它是由丰田公司研发的,至今在日本国内、美国、欧洲分别销量达3.5万辆、1万余辆、1万余辆。
欧洲也投入力量大力发展电动汽车。
法国在电池、电子控制和电机技术等电动汽车技术方面位于全球前列,法国的电动车产业最具优势,在整个的欧洲共有电动汽车的数量为12000辆,而单单法国所拥有的数量就占据了这个欧洲的63%。
在1971年,德国成立了城市电动车交通公司(GES),1991年国家投入了300辆电动汽车进行运行。
1.2.2国内发展现状我国正式对电动汽车的研制始于1981年,自从20世纪90年代以来,国家支持研发的关于电池技术和电动汽车的项目数量达十余项;机械部主办了关于电动型汽车的发展战略研究会;中美合作签署了电动汽车技术相关的战略协议;在中国的汕头、南澳岛开通了国家电动车专用实验区,并拥有世界各国多种先进的车型。
目前,我国已自主开发出多种型号的电动汽车,中国首辆电动轿车于2001年6月也在湖北东风汽车公司问世。
近600辆由我国自主研发的新能源汽车在北京2008年奥运会时得到了成功使用。
2010年的上海世博会,各场馆使用了大量的电动车。
国家高技术研究发展计划关于电动汽车重大专项燃料电池轿车项目分别由我国北京理工大学、清华大学、同济大学三所大学承建。