糖代谢摘要:糖是一类化学本质为多羟醛或多羟酮及其衍生物的有机化合物.在人体内糖的主要形式是葡萄糖(glucose,Glc)及糖原(glycogen,Gn).葡萄糖是糖在血液中的运输形式,在机体糖代谢中占据主要地位;糖原是葡萄糖的多聚体,包括肝糖原、肌糖原和肾糖原等,是糖在体内的储存形式.葡萄糖与糖原都能在体内氧化提供能量.食物中的糖是机体中糖的主要来源,被人体摄入经消化成单糖吸收后,经血液运输到各组织细胞进行合成代谢和分解代谢.机体内糖的代谢途径主要有葡萄糖的无氧酵解、有氧氧化、磷酸戊糖途径、糖原合成与糖原分解、糖异生以及其他己糖代谢等.关键词:糖的消化和吸收血糖糖的无氧酵解糖的有氧氧化磷酸戊糖途径糖异生作用糖蛋白与蛋白聚糖糖的消化和吸收食物中的糖主要是淀粉,另外包括一些双糖及单糖。
多糖及双糖都必须经过酶的催化水解成单糖才能被吸收。
食物中的淀粉经唾液中的α淀粉酶作用,催化淀粉中α-1,4-糖苷键的水解,产物是葡萄糖、麦芽糖、麦芽寡糖及糊精。
由于食物在口腔中停留时间短,淀粉的主要消化部位在小肠。
小肠中含有胰腺分泌的α淀粉酶,催化淀粉水解成麦芽糖、麦芽三糖、α糊精和少量葡萄糖。
在小肠黏膜刷状缘上,含有α糊精酶,此酶催化α极限糊精的α-1,4-糖苷键及α-1,6-糖苷键水解,使α-糊精水解成葡萄糖;刷状缘上还有麦芽糖酶可将麦芽三糖及麦芽糖水解为葡萄糖。
小肠黏膜还有蔗糖酶和乳糖酶,前者将蔗糖分解成葡萄糖和果糖,后者将乳糖分解成葡萄糖和半乳糖。
糖被消化成单糖后的主要吸收部位是小肠上段,己糖尤其是葡萄糖被小肠上皮细胞摄取是一个依赖Na+的耗能的主动摄取过程,有特定的载体参与:在小肠上皮细胞刷状缘上,存在着与细胞膜结合的Na+-葡萄糖联合转运体,当Na+经转运体顺浓度梯度进入小肠上皮细胞时,葡萄糖随Na+一起被移入细胞内,这时对葡萄糖而言是逆浓度梯度转运。
这个过程的能量是由Na+的浓度梯度(化学势能)提供的,它足以将葡萄糖从低浓度转运到高浓度。
当小肠上皮细胞内的葡萄糖浓度增高到一定程度,葡萄糖经小肠上皮细胞基底面单向葡萄糖转运体(unidirectional glucostransporter)顺浓度梯度被动扩散到血液中。
小肠上皮细胞内增多的Na+通过钠钾泵(Na+-K+ ATP酶),利用ATP提供的能量,从基底面被泵出小肠上皮细胞外,进入血液,从而降低小肠上皮细胞内Na+浓度,维持刷状缘两侧Na+的浓度梯度,使葡萄糖能不断地被转运。
血糖血液中的葡萄糖,称为血糖(blood sugar)。
体内血糖浓度是反映机体内糖代谢状况的一项重要指标。
正常情况下,血糖浓度是相对恒定的。
正常人空腹血浆葡萄糖糖浓度为3.9~6.1mmol/L(葡萄糖氧化酶法)。
空腹血浆葡萄糖浓度高于7.0 mmol /L称为高血糖,低于3.9mmol/L称为低血糖。
要维持血糖浓度的相对恒定,必须保持血糖的来源和去路的动态平衡。
一、血糖的主要来源及去路血糖的来源:①食物中的糖是血糖的主要来源;②肝糖原分解是空腹时血糖的直接来源;③非糖物质如甘油、乳酸及生糖氨基酸通过糖异生作用生成葡萄糖,在长期饥饿时作为血糖的来源。
血糖的去路:①在各组织中氧化分解提供能量,这是血糖的主要去路;②在肝脏、肌肉等组织进行糖原合成;③转变为其他糖及其衍生物,如核糖、氨基糖和糖醛酸等;④转变为非糖物质,如脂肪、非必需氨基酸等;⑤血糖浓度过高时,由尿液排出。
血糖浓度大于8.88~9.99mmol/L,超过肾小管重吸收能力,出现糖尿。
将出现糖尿时的血糖浓度称为肾糖阈。
糖尿在病理情况下出现,常见于糖尿病患者。
二、血糖浓度的调节正常人体血糖浓度维持在一个相对恒定的水平,这对保证人体各组织器官的利用非常重要,特别是脑组织,几乎完全依靠葡萄糖供能进行神经活动,血糖供应不足会使神经功能受损,因此血糖浓度维持在相对稳定的正常水平是极为重要的。
正常人体内存在着精细的调节血糖来源和去路动态平衡的机制,保持血糖浓度的相对恒定是神经系统、激素及组织器官共同调节的结果。
神经系统对血糖浓度的调节主要通过下丘脑和自主神经系统调节相关激素的分泌。
激素对血糖浓度的调节,主要是通过胰岛素、胰高血糖素、肾上腺素、糖皮质激素、生长激素及甲状腺激素之间相互协同、相互拮抗以维持血糖浓度的恒定。
激素对血糖浓度的调节。
肝脏是调节血糖浓度的最主要器官。
血糖浓度和各组织细胞膜上葡萄糖转运体(glucose transporters)是器官水平调节的两个主要影响因素,此时细胞膜上葡萄糖转运体家族有GLUT1-5,是双向转运体。
在正常血糖浓度情况下,各组织细胞通过细胞膜上GLUT1和 GLUT3摄取葡萄糖作为能量来源;当血糖浓度过高是,肝细胞膜上的GLUT2起作用,快速摄取过多的葡萄糖进入肝细胞,通过肝糖原合成来降低血糖浓度;血糖浓度过高会刺激胰岛素分泌,导致肌肉和脂肪组织细胞膜上GLUT4的量迅速增加,加快对血液中葡萄糖的吸收,合成肌糖原或转变成脂肪储存起来。
当血糖浓度偏低时,肝脏通过糖原分解及糖异生升高血糖浓度。
糖的无氧酵解糖酵解途径中有3个不可逆反应:分别由己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶1和丙酮酸激酶催化的反应。
它们是糖无氧酵解途径的三个调节点,其中以6-磷酸果糖激酶1的活性是该途径中的主要调节点。
(一)己糖激酶活性的别构调节骨骼肌中的己糖激酶的Km相对较小,在血糖达到一定浓度后,活性就能达到最高,它是一种别构酶,其活性受到自身反应产物6-磷酸葡萄糖的抑制。
肝内的葡萄糖激酶的直接调节因素是血糖浓度,由于葡萄糖激酶Km相对较大,在餐后、血糖浓度很高时,过量的葡萄糖运输到肝内,肝内的葡萄糖激酶激活;葡萄糖激酶也是别构酶,活性受到6-磷酸果糖的抑制,而不受6-磷酸葡萄糖的抑制,这样可保证肝糖原顺利合成。
(二)6-磷酸果糖激酶1的别构调节6-磷酸果糖激酶1是糖酵解途径中最重要的一个调节点,它是别构酶,由4个亚基组成,有很多激活剂和抑制剂。
高浓度ATP、柠檬酸是此酶的变构抑制剂。
ADP、AMP、2,6-二磷酸果糖(Fructose 2,6 bisphosphate,F-2,6-BP)是此酶的变构激活剂。
2,6-二磷酸果糖尽管和1,6二磷酸果糖结构相似,但F-2,6-BP不是6-磷酸果糖激酶1的产物,而是6-磷酸果糖激酶1最强烈的激活剂、最重要的调节因素。
F-2,6-BP的生成是以6-磷酸果糖为底物在6-磷酸果糖激酶2(6-phosphofructokinase2,PFK2)催化下产生(图6-5)。
6-磷酸果糖激酶2是双功能酶,包括6-磷酸果糖激酶2与2,6-二磷酸果糖酶2活性,它们同时存在于一条55x103(55kDa )的多肽链中。
6-磷酸果糖激酶2的别构激活剂是底物F-6-P,在糖供应充分时,F-6-P激活双功能酶中的6-磷酸果糖激酶2的活性、抑制2,6-二磷酸果糖酶2活性,产生大量F-2,6-BP。
相反,在葡萄糖供应不足的情况下,胰高血糖素刺激产生cAMP,激活A激酶,使双功能酶磷酸化后,双功能酶中的6-磷酸果糖激酶2活性抑制而2,6-二磷酸果糖酶2活性激活,减少F-2,6-BP产生。
由此可见,在高浓度葡萄糖的情况下,2,6-二磷酸果糖浓度提高,可激活6-磷酸果糖激酶1,促进糖酵解过程进行。
F-2,6-BP在参与糖代谢调节中起着重要作用。
(三)丙酮酸激酶丙酮酸激酶是糖酵解过程的第二个调节点,1,6-二磷酸果糖是此酶的别构激活剂,而ATP是该酶的别构抑制剂,ATP能降低该酶对底物磷酸烯醇式丙酮酸的亲和力;乙酰辅酶A及游离长链脂肪酸也是该酶抑制剂,它们都是产生ATP的重要物质。
糖的有氧氧化有氧氧化(aerobic oxidation)是指葡萄糖生成丙酮酸后,在有氧条件下,进一步氧化生成乙酰辅酶A,经三羧酸循环彻底氧化成水、二氧化碳及能量的过程。
这是糖氧化的主要方式,是机体获得能量的主要途径。
一、反应过程(一)葡萄糖氧化生成丙酮酸;这一阶段和糖酵解过程相似,在细胞质中进行。
在缺氧的条件下丙酮酸生成乳酸。
在有氧的条件下丙酮酸进入线粒体生成乙酰辅酶A,再进入三羧酸循环。
(二)丙酮酸氧化脱羧生成乙酰辅酶A在有氧条件下,丙酮酸从细胞质进入线粒体。
在丙酮酸脱氢酶复合体(pyruvate dehydrogenase complex)的催化下进行氧化脱羧反应,该反应的ΔG'0=-39.5kJ/mol,反应不可逆(图6-6)。
丙酮酸脱氢酶复合体是由三种酶组成的多酶复合体,它包括丙酮酸脱氢酶,二氢硫辛酸乙酰转移酶及二氢硫辛酸脱氢酶。
以乙酰转移酶为核心,周围排列着丙酮酸脱氢酶及二氢硫辛酸脱氢酶。
参与的辅酶有TPP,硫辛酸,FAD,NAD+,辅酶A。
在多酶复合体中进行着紧密相连的连锁反应过程,反应迅速完成,催化效率高,使丙酮酸脱羧和脱氢生成乙酰辅酶A及NADH+H+。
(三)三羧酸循环丙酮酸氧化脱羧生成的乙酰辅酶A要彻底进行氧化,这个氧化过程是三羧酸循环(tricarboxylic acid cycle,TCA cycle)。
三羧酸循环是Krebs于1937年发现的。
故又称Krebs循环。
因为循环中第一个中间产物是柠檬酸,故又称柠檬酸循环(citric acid cycle)。
乙酰辅酶A与草酰乙酸缩合生成含有3个羧基的柠檬酸,再经过一系列反应重新变成草酰乙酸完成一轮循环,其中氧化反应脱下的氢经线粒体内膜上经呼吸链传递生成水,氧化磷酸化生成ATP;而脱羧反应生成的二氧化碳则通过血液运输到呼吸系统而被排出,是体内二氧化碳的主要来源。
1.三羧酸循环反应过程:(1)乙酰辅酶A与草酰乙酸缩合生成柠檬酸此反应由柠檬酸合酶(citrate synthase)催化,是三羧酸循环的关键酶,是重要的调节点。
由于高能硫酯键水解时释出较多自由能,ΔG'0=-32.2kJ/mol,此反应不可逆。
(2)柠檬酸经顺乌头酸生成异柠檬酸此反应由顺乌头酸酶催化,柠檬酸脱水、加水生成异柠檬酸。
(3)异柠檬酸β-氧化、脱羧生成α-酮戊二酸此反应在异柠檬酸脱氢酶作用下进行脱氢、脱羧,这是三羧酸循环中第一次氧化脱羧。
异柠檬酸脱氢酶(isocitrate dehydrogenase)是三羧酸循环的限速酶,是最主要的调节点,辅酶是NAD+,脱氢生成的NADH+H+经线粒体内膜上经呼吸链传递生成水,氧化磷酸化生成3分子ATP。
异柠檬酸先脱氢生成草酰琥珀酸,再脱羧生成α-酮戊二酸。
ΔG'0=-20.9kJ/mol。
(4)α-酮戊二酸氧化、脱羧生成琥珀酰辅酶A此反应在α-酮戊二酸脱氢酶复合体(α-ketoglutarate dehydrogenase complex)的催化下脱氢、脱羧生成琥珀酰辅酶A,这是三羧酸循环中第二次氧化脱羧。