间规聚苯乙烯改性研究进展一、选题的依据及意义:按照苯乙烯聚合物分子中侧链苯对链骨架空间取向的不同,聚苯乙烯分子有3种不同立体构型,相应地形成了三种聚合物,即无规聚苯乙烯(aPS)、等规聚苯乙烯(iPS)和间规聚苯乙烯(sPS)。
自从Ishihara[1]等用TiCl4/MA CpTiCl3/MAO(Cp为茂环)合成高结晶度的sPS以来,苯乙烯间规聚合研究受到了重视。
sPS的主要特征是熔点高(270℃),比Ips[2]高40℃,相当于aPS的3倍,与工程塑料尼龙-66相近。
sPS具有结晶性,结晶速度较快,有时被称为高结晶聚苯乙烯。
这种结晶型sPS构成了全新的PS工程塑料系列,它具有优良的耐热、耐化学腐蚀、耐水、耐蒸汽和耐溶剂性,某些性能能与尼龙-66聚苯硫醚(PPS)[3]等工程塑料相匹敌。
并且材料流动性能较好,适合于常规方法加工,如注塑、挤塑,成型产品尺寸稳定性好,目前已有片级、膜级、纤维级和挤管级制品用于汽车保险杠、机械制品、集成电路及印刷电路板等。
新的特殊应用领域还在不断的开拓中,因此具有广泛的应用前景,被看作是复兴苯乙烯行业的希望。
同时,其单体苯乙烯便宜易得,sPS产品的利润可观,目前sPS的价格在~万元/吨左右。
价格相比昂贵的氟塑料具有很大的优势。
然而,sPS分子链刚性较大,导致材料较脆,抗弯、抗冲击强度低,加工流变性较差,因而限制了其广泛应用。
经玻纤增强后的SPS复合材料[4],其综合物性可与其它工程塑料如PET、PBT、PAG6、PPS相媲美。
故此,SPS在汽车工业、膜材料、照相基材、食品容器、电子/电器等方面有广泛应用。
由于sPS分子链的侧链上存在空间位阻较大的苯环,与其它工程塑料相比,韧性相对较差,如何进一步提高sPS的综合力学性能,对sPS应用领域的拓展具有重要意义。
一般纯的sPS主要用作膜材料、纤维等,而要作其他用途必须经过改性。
本文主要详细描述了,近几年来国内外对sPS的改性研究进展,并对其各个方面做了写详细的汇总,并且加以总结概述。
二、国内外研究概况及发展趋势:20世纪80年代初,德国汉堡大学[5]Kaminsky等发现,金属茂Cp2MCl2(M=Ti、Zr、Hf)与三甲基铝的部分水解产物-三甲基铝氧烷(MAO)作用,可以得到高活性间规聚合催化剂-金属茂催化剂,sPS[4]也引起人们高度重视。
在这以前,sPS是用苯乙烯α-甲基苯乙烯[6]和其它苯乙烯衍生物在实验室中用阳离子催化剂如(Et)2、TiCl4、AlCl3、SnCl4和各种金属的三甲基苯盐或阴离子引发剂如n-C4H9Li、萘基钠、萘基钾和萘基铯制备的。
但因为聚合条件苛刻,且sPS产率低、聚合速度慢、大多数品种不可能工业化。
1985年日本出光兴产公司(IdemitsuKosan .)Ishihara[1]合成了间规聚苯乙烯[7]后,立即引起企业和研究机构的广泛兴趣。
1988年日本出光兴产公司与美国DOW公司联合开发sPS生产工艺,并获得成功[8]。
日本出光兴产公司于1996年10月建成5千吨级sPS生产装置。
美国DOW化学公司于1999年在德国建成年产万吨的工业化装置,并开始出售产品,商品名为QuestraTM。
韩国三星综合化学公司(Samung General ChemicalsCo.)也于1995年开始进行sPS 的研究工作,具有自主知识产权的高活性茂金属催化剂和聚合工艺,目前已进入中试阶段。
国内已有中石化上海石油化工研究院、中山大学、中科院化学所、中石化石油化工科学研究院、中科院长春应化所等单位在进行间规聚苯乙烯的研究工作,但目前尚处于实验室催化剂的研制及聚合工艺的探索阶段,少数单位的研究已达到了中试的起步阶段。
间规聚苯乙烯(sPS)的性质前面已经提到关于间规聚苯乙烯(sPS)的物理性质,主要体现在高熔点(270℃),高耐化学腐蚀、耐热、耐水、耐蒸汽和耐溶剂性以及卓越的可加工性能。
并且该聚合物结晶度高,热稳定性好,具有复杂的多晶型和多重熔峰。
到目前为止,(sPS)间规聚苯乙烯有四种稳定的晶型:α、β、δ和γ型。
其中以大球晶形态存在的sPS更易具有脆性的缺点。
许多文献已报道了sPS中的各种结晶单元结构、链构象以及它们与结晶条件的关系,这对改善sPS力学性能具有一定指导意义。
其表现出比较复杂的多晶行为[9],主要来自两方面的因素,即单个高分子链的构象和高分子链苯的堆积。
有关于间规聚乙烯(sPS)的结晶性的详细研究将在正文中加以讨论。
sPS熔点高(264~277℃),结晶速度快,结晶度在50%左右,呈剪切变稀的流变性;还具有高弹性模量、高电绝缘性能、较高的尺寸稳定性和低比重等良好性能(见表1)间规聚苯乙烯(sPS)的改性方向sPS优良的性能使其成为极具广阔前景的工程塑料,但脆性大又限制了它的应用。
因此需要对它进行改性。
目前常用的改性方法有复合增强、共混改性和共聚改性,化学改性,接枝改性[10]等。
表1 sPS的基本物理参数物理参数参数值密度~1.45g/cm3拉伸强度35~132MPa拉伸断裂伸长率%~20%弯曲强度64~185MPaIzod缺口冲击强度7~11KJ/m2热变形温度95~251℃体积电阻率104Ω·cm介电常数~sPS的共混增韧改性共混增韧是高分子材料改性的简便有效的方法之一。
在sPS中需要加入共混改性剂(橡胶弹性体、热塑性树脂)及无机填料等,通过强制的、良好的混合得到力学性能良好且稳定的聚合物共混物。
玻璃纤维复合增强sPS从目前的研究结果来看,加入适量的玻璃纤维、高强纤维等增强材料可改善sPS的性能(见表2)。
表2 玻璃纤维增强后的sPS 与其它热塑性工程塑料的性能比较[6]项目sPS PBT PET N-6,6玻璃纤维加入量/ % 30 30 30 30密度/ g·cm-3吸水率/ %模压收缩率/ %断裂拉伸率/ %断裂强度/ MPa 118 138 152 177弯曲强度/ MPa 185 215 196 255弯曲模量/ MPa 9020 9500 9800 8300缺口冲击强度/ kJ·m- 2 11 9 8 10热变形温度/ ℃()251 210 245 250()269 225 250 262介电常数(1MHz)损耗因子(1MHz)<注:PBT为聚对苯二甲酸丁二醇酯;PET为聚对苯二甲酸乙二醇酯;N-6,6为尼龙-6,6。
橡胶弹性体橡胶弹性体加入塑料sPS中,分散相是橡胶颗粒。
sPS受到外力作用时,橡胶颗粒的第一个重要作用就是充作应力集中中心,诱发大量银纹或剪切带,大量银纹或剪切带的产生和发展要消耗大量能量;橡胶颗粒的第二个重要作用是控制银纹的发展并使银纹及时终止而不致发展成破坏性的裂纹,所以可大大提高材料的冲击强度[7]。
但是,橡胶含量过多,sPS的拉伸、弯曲以及表面强度等指标下降,加工性能变坏,所以其用量要适度。
常用的橡胶有SBR(苯乙烯/丁二烯嵌段共聚物)、SBS(苯乙烯/丁二烯/苯乙烯嵌段共聚物)、SEBS(氢化苯乙烯/丁二烯/苯乙烯嵌段共聚物)、EPDM(乙烯/丙烯/二烯类共聚物)等。
最好用苯乙烯和烯烃的接枝或嵌段共聚物,这类共聚物还可以提高与sPS的相容性[11~14]。
热塑性树脂以PPE(聚苯醚)为主的热塑性树脂具有优异的力学性能和电性能,且与sPS相容性好[4~7]。
除PPE还可加入核壳结构的聚合物[15,16]。
核层物质可以是PBA(聚丙烯酸丁酯)、PEA(聚丙烯酸乙酯)等橡胶类聚合物,壳层可以是一层或两层,多为PS(聚苯乙烯)、PMMA(聚甲基丙烯酸甲酯)、P(MMA/EA)(聚甲基丙烯酸甲酯/丙烯酸乙酯共聚物)。
核层的橡胶相可以提高共聚体系的强度,而壳层可以改善与sPS的相容性。
无机填料无机填料的加入既能提高韧性也能起到增强作用,比如GF(玻璃纤维)、CF (碳纤维)、云母等。
大多利用GF纤维的高强度来承受应力[8~9]。
苯乙烯与其衍生物共聚一般认为能进行苯乙烯聚合的茂金属催化剂也可进行其衍生物的聚合。
对甲基苯乙烯和卤代苯乙烯是最早研究的单体[17~21]以CpTiCl3、Ti(CH2C6H5)4、Ti(OMe)4为催化剂时只能合成无规对甲基苯乙烯均聚物和有规立构卤代苯乙烯均聚物,而进行共聚时,可得到苯乙烯P对甲基苯乙烯的有规立构共聚物,和苯乙烯P卤代苯乙烯的无规共聚物。
另外还包括,苯乙烯与二烯烃共聚,苯乙烯与α2烯烃共聚,在这里就不做详细说明了。
增容剂改性由于橡胶及无机填料与sPS的相容性较差,须加入增容剂。
其中包括非反应型和反应型的增容剂。
非反应型增容剂主要是嵌段或接枝共聚物,反应型增容剂多是一些含有可与共混组分起化学反应的官能团的共聚物。
如MAH(马来酐)[22];ssPS-H(磺化间规聚苯乙烯)[23],其sPS主链苯环上含有一定量极性的磺酸基。
它们使相界面之间的结合力大大增强,从而提高共混体系的相容性。
sPS的合金化除复合增强、共混改性外,sPS的合金化也是其改性方向之一。
为提高sPS的抗冲击性,在聚合时选用适量的橡胶组分进行接枝聚合,使最终产品中含一定量的橡胶成分,即可满足应用要求。
可以选用的有:在端基有活性聚合基团的大分子单体[24]、芳基烯烃。
文献报道[25]的芳基烯烃有苯乙烯类的甲基苯乙烯(邻、间、对位)、二乙烯基苯等。
多环芳基烯烃类有α-乙烯基萘、4-乙烯基联苯、ρ-乙烯蒽等。
添加芳基烯烃,可以改变聚合物的结晶速度,适合于挤压加工的要求。
还可以将苯乙烯与某些极性单体共聚使sPS具有一些特殊的性能[26~27]。
如马来酸酐、(甲基)丙烯酸酯、丙烯酸胺、丙烯腈等。
sPS的化学改性SPS的化学改性研究集中在磺化[28~30],溴化[31~32]两个方面。
sPS的化学改性主要有:(1)在sPS分子链侧基苯环或链端引人功能性官能团,其中主要进行的化学反应有卤化、磺化、氯磺化、环氧化、丙烯酸化、马来酸酐化等。
其中,对sPS 改性物结构研究最多的是磺化sPS(SsPS)和卤化sPS;应用研究最广的是马来酸酐(MAH)改性sPS和甲基丙烯酸缩水甘油酯(GMA)改性sPS;(2)在sPS分子链上接枝SEBS等大分子;(3)苯乙烯单体与其它烯烃单体共聚得到含间规度高的聚苯乙烯链段的共聚物,下面分别进行论述磺化改性是在sPS大分子的苯环上引入极性磺酸基团。
Moore等[33],Hsu[34]和Li[35]分别对sPS的磺化反应进行了研究。
具体操作是将sPS溶于合适溶剂中,在溶液状态下和磺化试剂反应,合成磺化间规聚苯乙烯(SsPS)。
磺化间规聚苯乙烯(SsPS—H)及其离聚体(SsPS—M)磺化间规聚苯乙烯(SsPS—H)及其金属离子离聚体(SsPS—M),由于在非极性的碳氢链基质中发生聚集形成多重离子或离子簇,因而与sPS相比,在溶解性、结晶性、热力学性能等方面都不尽相同。