承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题.我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出.我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性.如有违反竞赛规则的行为,将受到严肃处理.我们参赛选择的题号是(从A/B/C/D中选择一项填写)赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文针对嫦娥三号软着陆轨道设计与控制策略的实际问题,以理论力学(万有引力、开普勒定律、万能守恒定律等)和卫星力学知识为理论基础,结合微分方程和微元法,借助MATLAB软件解决了题目所要求解的问题。
针对问题(1),在合理的假设基础上,利用物理理论知识、解析几何知识和微元法,分析并求解出近月点和远月点的位置,即139.1097 。
再运用能量守恒定律和相关数据,计算出速度v(近月点的速度)1=1750.78/v(远月点的速度)=1669.77/m s,,最后利用曲线的切线m s,2方程,代入点(近月点与远月点)的坐标求值,计算出方向余弦即为相应的速度方向。
针对问题(2)关键词:模糊评判,聚类分析,流体交通量,排队论,多元非线性回归一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m(见附件1)。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
二、问题分析2.1问题(1)的分析首先根据问题的假设、题目中所提供的数据及图片分析,可以知道嫦娥三号绕月球的轨道是由圆形轨道变为椭圆形轨道,借助开普勒定律、能量守恒定律求解出近月点的速度。
为了确定近月点和元月点的精确位置及相应的速度方向,我们建立以赤道(月球的赤道)平面为xoy平面、月心为原点、月心与零度经线和零度纬线交线的交点的连线为坐标轴的坐标系和赤道(月球的赤道)平面为xoy 平面,为极轴(月球的极轴)为z轴建立空间直角坐标系,x轴与极坐标系的轴相重合。
首先根据着陆点的经度、纬度及月球的半径求解出着陆点和近月点(带参数α)的空间直角坐标。
其次利用两点间的距离公式,并借助MATLAB软件求解出近月点与着陆点最短距离。
从而计算出α(近月点的经度)=。
最后利用卫星的轨迹是以月心为其中一个焦点,以近月点与远月点的距离为长轴的椭圆,从而求解出卫星的轨迹方程,再运用隐函数求导的应用的知识,求解出在近月点和远月点的方向导数,进而求解近月点和远月点方向余即为近月点和远月点的速度的方向。
2.2问题(2)的分析首先在根据题意,将嫦娥三号软着陆问题,分为6个阶段依次为主减速、快速调整、粗避障、精避障、缓慢下降、自由下降,我们先将6个阶段分为4个阶段,依次为第一阶段(主减速和快速调整)、第二阶段(粗避障)第三阶段(精避障),第四阶段(缓慢下降和自由下降)。
其次在第一阶段粗避障阶段,嫦娥三号悬停在月球表面约2400米上方,对星下月表进行二维和三维成像,利用遗传算法的思想,从图像中先随机选取部分点,能直接从三维图像中得知该点的海拔高度,再分别扫描这些点附近的地貌,找出一些地势平坦的区域,我们用区域内所有点与中心点海拔的均方差作为地势判断依据之一,保留这些坐标,并进行重新组合,并改变某些坐标以便能获得其他新区域的坐标,再次搜索地势平坦的区域,重复进行多次搜索,直到没有出现崎岖地势的时候,我们将此时地势最平坦的地方作为全局最优降落地点三、模型假设1、不考虑空间飞行器上各点因燃料消耗而产生的位移;2、在对卫星和空间飞行器进行轨道估计时,认为作用于其上的所有外力都通过其质心;3、卫星和空间飞行器的运动是在真空中进行的;4、卫星只受重力影响,空间飞行器除自身推力外只受重力影响;5、卫星的观测图片及数据精准;6、四、变量与符号说明C一条车道的基本通行能力L连续车流的车头间距C n 条车道的基本通行能力y排队长度x车流量1x横断面通行能力系数车流量2x持续时间3五、模型建立与求解5.1 问题(1)的分析、模型建立与求解5.1.1建模准备(1)开普勒定律开普勒第一定律开普勒第一定律开普勒第一定律,也称椭圆定律:每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。
开普勒第二定律开普勒定律开普勒第二定律,也称面积定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。
这一定律实际揭示了行星绕太阳公转的角动量守恒。
用公式表示为开普勒定律开普勒第三定律开普勒定律开普勒第三定律,也称调和定律:各个行星绕太阳公转周期的平方和它们的椭圆轨道的半长轴的立方成正比。
由这一定律不难导出:行星与太阳之间的引力与半径的平方成反比。
这是牛顿的万有引力定律的一个重要基础。
用公式表示为32a K T=开普勒定律这里,是行星公转轨道半长轴,是行星公转周期,是常数 。
(2)万有引力万有引力:任意两个质点有通过连心线方向上的力相互吸引。
该引力大小与它们质量的乘积成正比与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。
即:122M M F Gr =, 其中12M M ,为两物体的质量,11226.6710..G N m kg -=⨯(牛顿每平方米二次方千克)5.1.2 模型的建立根据以上的分析,建立以月球赤道平面为xOy 平面,月心为原点O 、Ox 为月心与零度经线和零度纬线交线的交点的连线,Oz 为极轴(月球的极轴),Oy 与Ox 和Oz 满足右手标架,建立空间直角坐标系(如图5-1所示)。
图5-1 卫星绕月轨迹及软着陆轨迹由于着陆点在球面上且近月点与远月点是由月球的经度、纬度及高度唯一确定,在此为了便于计算 将极坐标转化为空间直角坐标,并代数题中相关数据,反解出经度α。
极坐标转化为空间直角坐标即:sin cos sin sin cos x r y r z r ϕθϕθϕ=⎧⎪=⎨⎪=⎩( 5.1.1)'''sin(90-sin(90-cos(90-x r y r z r βαβαβ⎧=⎪=⎨⎪=⎩)cos(-))cos(-)) (5.1.2) 距离公式:'2'2'2000()()()d x x y y z z =-+-+- (5.1.3)其中:β为纬度;α为经度;r 为嫦娥三号距月心的距离;d 为嫦娥三号距着陆点的距离;根据能量守恒、开普勒第二定律(面积定律),建立以下模型 即:112222121122r v r v mv mgh mv mgH =⎧⎪⎨+=+⎪⎩ (5.1.4)则近月点的速度,近月点的速度:221222121222212()2()g H h r v r r g H h r v r r ⎧-=⎪-⎪⎨-⎪=⎪-⎩(5.1.5)其中:m 为卫星的质量,1h 为海拔高度,h 近月点距月球表面的距离;101r h r h =++,201r H r h =++,0r 月球半径,H 远月点距月球表面的距离, g 月球重力加速度,1v 近月点的速度,2v 近月点的速度。
5.1.3模型的求解5.1.3.1 近月点与远月点的位置根据题目所给数据以上分析,可知:010,15000,1737013,2641h m r m h m β====-将以上数据代入(5.1.1)式可得,着陆点及近月点的空间直角坐标分别为:()()()()000000000sin(90)cos sin(9019.51)cos 44.12sin(90)sin sin(9019.51)sin 44.12cos(90)cos(9019.51)x r r y r r z r r βαβαβ⎧=--=--⎪⎪=--=--⎨⎪=-=-⎪⎩ (5.1.6)'0'0'sin(90-)cos sin(90-)sin cos(90-x r h y r h z r βααβααβ⎧=+⎪=+⎨⎪=⎩)cos(-)=(r )sin(-)=-(r )=0 (5.1.7)再将(5.1.6)式和(5.1.7)式代入(5.1.3)式可得关于α与d (近月点和着陆点距离)的函数,?利用Mathematica 5.0编程求解可得:α=-139.1075.1.3.2近月点与远月点的速度大小及方向近月点与远月点的速度方向,即为相应速度在x 轴与y 轴方向上的投影(如图5-2所示)图5-2 近月点与远月点的速度方向示意图由图易知:5.2 模型二的建立 5.2.1模型准备 5.2.1.1系统模型1、着陆器的动力下降段一般从15km 左右的轨道高度开始,下降到月球表面的时间比较短,在几百秒范围内,所以可以不考虑月球引力摄动。
月球自转速度比较小,也可忽略。
因此,可以利用二体模型描述系统的运动。
建立图5-2所示的着陆坐标系,并假设着陆轨道在纵向平面内,令月心为坐标原点,Oy 指向动力下降段的开始制动点,Ox 指向着陆器的开始运动方向。
则着陆器的质心动力学方程可描述如下:22(/)sin /[(/)cos 2]//SPr vv F m r r F m v r m F I ψμωθωωψω=⎧⎪=-+⎪⎪=⎨⎪=-+⎪=-⎪⎩ ⑴ 式中:,,r θω和m 分别为着陆器的月心距、极角、角速度和质量;v 为着陆器沿r 方向上的速度;F 为制动发动机的推力(固定的常值或0);SP I 为其比冲;μ为月球引力常数;ψ为发动机推力与当地水平线的夹角即推力方向角。