化学气相沉积..
在稳态,两类粒子流密度应相等,这样得到
F F1 F2
可得:
ks CS CG 1 hG
1
(1)hg>> ks时,Cs趋向Cg,淀积速率受表面化学反应控制
(2)ks >> hg时,Cs趋向0,淀积速率受质量输运速率控制
6.2 CVD工艺原理
Grove模型
要的原子数量):
薄膜淀积速率(其中N1表示形成一个单位体积薄膜所需
k s hg Cg F G N1 k s hg N1 k s hg k s hg
结论:
CT Y N1
(1)淀积速率与Cg(反应剂的浓度)或者Y(反应剂的摩尔百 分比)成正比; (2)在Cg或者Y为常数时,薄膜淀积速率将由Ks和hg中较小 的一个决定。
p- Epitaxial layer p+ Silicon substrate
芯片中的金属层
6.1 CVD概述
对薄膜的要求
好的台阶覆盖能力 填充高的深宽比间隙的能力
好的厚度均匀性
高纯度和高密度
受控制的化学剂量
高度的结构完整性和低的膜应力
好的电学特性
对衬底材料或下层膜好的黏附性
与热氧化生长稍有 不同的是,没了 在SiO2中的扩散流 F1:主气流到衬底表面的反应剂流密度
F2:反应剂在表面反应后淀积成固态薄膜的流密度 Cg:反应剂在主气流中的浓度
Cs:反应剂在硅表面处的浓度
6.2 CVD工艺原理
F1 hG (CG C S )
Grove模型
F2 ksCS
其中:hG 是质量输运系数, ks 是表面化学反应系数
6.1 CVD概述
CVD相对于PVD,有什么优点?
跟材料特性相关的性质——结晶性和理想配 比都比较好 薄膜成分和膜厚容易控制
*淀积温度低
*台阶覆盖性好(step coverage)
6.1 CVD概述
化学气相淀积(CVD)
单晶 (外延)、多晶、非晶(无定型)薄膜 半导体、介质、金属薄膜
6.2 CVD工艺原理
薄膜淀积速率
表面化学反应控制:温度 质量输运速率控制:位置
斜率与激活 能Ea成正比
图6.8 硅膜淀积速率与温度倒数的关系
升高温度可以提高淀积速率 但随着温度的上升,淀积速率对温度的敏感度不断下降; 当温度高过某个值后,淀积速率受质量输运速率控制
6.2 CVD工艺原理
气体分子的平均自由程远小于反应室的几何尺寸,可以 认为气体为黏滞性流动 由于气体的黏滞性,气体与硅片表面或侧壁存在摩擦力 ,该摩擦力使紧贴硅片表面或者侧壁的气体流速为零 在离硅片表面或者侧壁一定距离处,气体流速过渡到最 大气流Um
6.2 CVD工艺原理
Grove模型
从简单的生长模型出发,用 动力学方法研究化学气相淀 积推导出生长速率的表达式 及其两种极限情况。
常压化学气相淀积(APCVD),低压CVD
(LPCVD),等离子体增强淀积(PECVD)等
CVD反应必须满足三个挥发性标准
在淀积温度下,反应剂必须具备足够高的蒸汽压 除淀积物质外,反应产物必须是挥发性的
淀积物本身必须具有足够低的蒸气压
6.2 CVD工艺原理
化学气相淀积的基本过程
6.1 CVD概述
两类主要的淀积方式
1)物理气相淀积 — Physical Vapor Deposition (PVD) 利用某种物理过程实现物质的转移,即将原子或分子转移 到衬底(硅)表面上,并淀积成薄膜的技术。 例如:蒸发 evaporation,溅射sputtering 2)化学气相淀积 — Chemical Vapor Deposition (CVD) 通过气态物质的化学反应在衬底上淀积一层薄膜材料的过 程。 例如:APCVD, LPCVD, PECVD, HDPCVD
1、反应剂气体混合物以合理的流速被输运到沉积区 2、反应剂气体由主气流通过边界层扩散到衬底表面 3、反应剂气体吸附在衬底表面上 4、吸附原子(分子)发生化学反应,生成薄膜基本元素 5、副产物分子离开衬底表面,由衬底外扩散到主气流,排出
6.2 CVD工艺原理
边界层理论
气体速度受到扰动并按抛物线型变化、同时还存在反 应剂浓度梯度的薄层称为边界层(附面层、滞留层)
金属 氧化硅 场氧化层
p+ n-well
多晶
金属
p+
金属前氧化层 侧墙氧化层
栅氧化层
p- epi layer
p+ silicon substrate
ULSI硅片上的多层金属化
钝化层
ILD-6
压点金属
M-4
ILD-5
ILD-4
M-3 ILD-3 M-2 ILD-2 M-1 Via LI metal n+ p+ n-well Poly gate p+ ILD-1 LI oxide STI n+ p-well n+ p+
以硅外延为例(1 atm,APCVD)
外延硅淀积往往是 在高温下进行,以 确保所有硅原子淀 积时排列整齐,形 成单晶层。为质量 输运控制过程。此 时对温度控制要求 不是很高,但是对 气流要求高。
hG 常数
Ea 值相同
多晶硅生长是在低 温进行,是表面反 应控制,对温度要 求控制精度高。
6.2 CVD工艺原理
6.1 CVD概述
除了CVD和PVD外,制备薄膜的方法还有:
旋涂Spin-on 镀/电镀 electroless plating/electroplati ng
铜互连是由电镀工艺制作
6.1 CVD概述
化学气相淀积(CVD)
CVD技术特点:
具有淀积温度低、薄膜成分和厚度易于控制、均匀性 和重复性好、台阶覆盖优良、适用范围广、设备简单 等一系列优点 CVD方法几乎可以淀积集成电路工艺中所需要的各 种薄膜,例如掺杂或不掺杂的SiO2、多晶硅、非晶 硅、氮化硅、金属(钨、钼)等
第六章 化学气相沉积
6.1 CVD概述 6.2 CVD工艺原理 6.3 CVD工艺方法 6.4 二氧化硅薄膜的淀积 6.5 氮化硅薄膜淀积 6.6 多晶硅薄膜淀积 6.7 金属及金属化合物薄膜
1
MSI时代nMOS晶体管的各层膜
氮化硅 顶层
氧化硅
垫氧化层 ILD
Poly n+ n+