当前位置:
文档之家› 第二章 单自由度系统20120306
第二章 单自由度系统20120306
解
ln 4.2 1.435
4
2 2
0.22265
n
2 T 1
2
1.14 3.58
作业 2——3、10、11、12、16、30b
例2-31:质量m=2000kg,以匀速度v=3cm/s运动,与弹簧k,阻尼器c相撞 后一起做自由振动。请问质量m在相撞后多少时间达到最大振幅?最大振 幅是多少?已知 k 48020 N / m, c 1960 N s / m。
X
F
m 2 e me 2 M X (k 2 M ) 2 2c 2 (1 2 )2 (2 ) 2
系统的振动放大因子为:
MX me
d XM 0 d me 1 * 1 2 1 2 XM 1 M * me max 2 1 2
x(t ) xh (t ) xs (t ) Ae
n t
sin(d t )
F ( k m) c
2 2 2 2
sin(t )
由初始条件 x 0 x0 , x 0 x0 可以确定待定参数A和
单自由度系统在简谐激励下的强迫振动
2
2 1 n
单自由度有阻尼自由振动
解的讨论:
1,2 2 1 n
当 1时,1 2 n
x B1 B2t e nt
不属于振动
当 1时,1、2都是负实数
x B1e B2e
1t 2t
1 t B e 1 t Be
系统的势能为 U W R r 1 cos 2W R r sin 2
由于圆柱体作微振动,故系统的最大动能
2
Tmax
系统的最大势能
3W 2 R r n 2 A2 4g
1 U max W R r A2 2
由机械能守恒,有 Tmax U max ,解的系统的固有频率为
x(t ) xh (t ) xs (t )
单自由度系统在简谐激励下的强迫振动
振动微分方程
m x c x kx F sin t
齐次方程
m x c x kx 0
齐次方程通解
xh (t ) Aent sin(d t )
Fsint
A:振幅
式中,等效静位移 X 0 F k , 频率比 / n 振幅放大因子
M X 1 X0 (1 2 ) 2 (2 ) 2
单自由度系统在简谐激励下的强迫振动
X 1 X0 (1 2 ) 2 (2 ) 2
M
振幅放大因子
/ n
等效静位移
对数衰减率
xi Aenti sin d ti
ti 3T
ti
ti 3T
xi 3T Ae
xi xi 3T
ln xi xi 3T
n ti 3T
sin d ti
en 3T
3nT
对数衰减率
ln
xi nT xi T
由 x 0,得最大振幅发生在 tm
根据题意有:
c 0.1 2 mk
1
d
arctand n Nhomakorabea注意:最大振幅并不发生在
sin d t 1 即 t
此时:
n
k 4.9( s 1 ) m
2 1
时, 2d
d 1 n 4.875( s )
单自由系统的振动分析
M
0
自由振动微分方程
m x c x kx 0
无阻尼自由振动方程:
2 x n x 0
C
K
方程解:
A
x x n
2 0 2 0
2
x A sin n t
固有圆频率:
arctan
n x0
x0
x
v
tm 0.3( s )
xmax
v
d
entm sin d tm 0.529(cm)
d
e
n
2d
0.526(cm)
单自由度系统在简谐激励下的强迫振动
振动微分方程
m x c x kx F sin t
F: 激振力幅值 ω:激振力频率 通解=齐次方程通解+非齐次方程特解
解:
系统自由振动的微分方程为:
m x c x kx 0 x 0 n x0 x ent x0 cos d t sin d t d x0 0,x0 v 初始条件下的响应为: v nt v nt x e sin d t , x e (d cos d t n sin d t ) d d
固有频率:
k n m
rad / s
n f 2
Hz
例:求倒摆的振动微分方程和固有频率
系统运动方程:
2 ML2 L mL Mg sin Ka tan a mgL sin 3 2
化简上式,得振动微分方程:
Ka 2 m M m 3 M Lg 2 0 2 L
x Ae nt sin(d t )
0 tg x0
1
0 tg x0
1
例1
建立如图所示系统的运动方程,试确定临界阻尼系数和有阻尼固有频率。
解
ml ka ca
2 2 2
2
ca 2 a k 2 0 l m l m
o t
o
M x c x kx me 2 sin t
方程稳态响应可表示为:
M m
x(t ) X sin(t )
对比力载荷强迫振动
(k 2 m) 2 2 c 2 m 2 e me 2 M X (k 2 M ) 2 2c 2 (1 2 )2 (2 ) 2
从而得到
F X Xe j k 2 m jc
式中X为振幅,是复振幅 X 的模,即
X X
F ( k 2 m) 2 2 c 2
c k 2m
为相角,是复振幅 X 的幅角,有
arctg X tan 1
单自由度系统在简谐激励下的强迫振动
因此,方程的特解 xs (t ) X e jt Xe j e jt Xe j t 方程的通解为(取虚部)
e jt cos t j sin t
实际解取复数解的虚部
单自由度系统在简谐激励下的强迫振动
假定方程的特解为 xs (t ) Xe jt 式中 X 为复振幅。代入振动微分方程
m x c x kx Fe jt
( 2 m jc k ) Xe jt Fe jt
1 1 1 K eq k1 k2
梁的等效弹簧刚度
悬臂梁端点静挠度
f
mgl 3 mg 3EI K eq
K eq
3EI l3
mg
简支梁中点静挠度
mgl 3 mg f 48EI K eq
48EI K eq 3 l
端面扭转角
Ml
GI P
G ——剪切弹性模量
I P ——抗扭截面惯性矩
X0 F k
频率比
简谐激励下的强迫振动
共振条件
dM 0 d
* 1 2 2 1
M max M * 1 2 1 2
旋转不平衡质量引起的强迫振动
系统的振动微分方程
单自由系统
me 2
x
e m
d 2x d2 ( M m) 2 m 2 ( x e sin t ) c x kx dt dt
d 1 2 n
单自由度有阻尼自由振动
x e nt B1 B2 cos d t j B1 B2 sin d t
ent B3 cos d t B4 sin d t
n t
e
x0 n x0 sin d t x0 cos d t d
2 2 n n
1
2
不属于振动
单自由度有阻尼自由振动 j 1 当 1时
2 1,2 n
j x Be
1
1 2 n t j 1 2 n t
e
n t
B e
1
j B e
2
1 2 n t
B2 e
j 1 2 n t
mg
固有频率:
Mg
n
Ka 2 m M m 3
M Lg 2 2 L
rad / s
例:求圆柱体在平衡位置附近作微小振动的固有频率
系统的动能为
系统的动能为
2 1 1 3W 2 2 2 T mo1 J o1 R r 2 2 4g
n
k m
阻尼比
c 2 mk
=
c cc
临界阻尼系数
cc
单自由度有阻尼自由振动
2 x 2n x n x 0
运动方程的解 常系数线性齐次微分方程通解
x Bet
2 2 2n n 0
特征方程
解得其特征根为
1,2
2 2 2n 4 2n 4n
n
2g 3 R r