当前位置:文档之家› 压控晶振原理

压控晶振原理

压控晶振原理
压控晶体振荡器简介
压控晶体振荡器全称:电压控制晶体振荡器(Voltage Controlled Crystal Oscillator),是一种与晶体谐振器串联插入变容二极管,根据外部加入的电压使二极管的容量发生变化,来达到输出频率可根据晶体谐振器的负载电容特性变化的晶体振荡器。

VCXO主要由石英谐振器、变容二极管和振荡电路组成,其工作原理是通过控制电压来改变变容二极管的电容,从而“牵引”石英谐振器的频率,以达到频率调制的目的。

VCXO大多用于锁相技术、频率负反馈调制的目的。

石英晶体振荡器是由品质因素极高的石英晶体振子(即谐振器和振荡电路组成。

晶体的品质、切割取向、晶体振子的结构及电路形式等,共同决定振荡器的性能。

压控晶体振荡器具有以下特点:
(1)低抖动或低相位噪声:由于电路结构、电源噪声以及地噪声等因素的影响,VCO的输出信号并不是一个理想的方波或正弦波,其输出信号存在一定的抖动,转换成频域后可以看出信号中心频率附近也会有较大的能量分布,即是所谓的相位噪声。

VCO输出信号的抖动直接影响其他电路的设计,通常希望VCXO的抖动越小越好。

(2)宽调频范围:VCO的调节范围直接影响着整个系统的频率调节范围,通常随着工艺偏差、温度以及电源电压的变化,VCXO的锁定范围也会随着变化,因此要求VCXO有足够宽的调节范围来保证VCXO的输出频率能够满足设计的要求。

(3)稳定的增益:VCO的电压——频率非线性是产生噪声的主要原因之一,同时,这种非线性也会给电路设计带来不确定性,变化的VCXO增益会影响环路参数,从而影响环路的稳定性。

因此希望VCXO的增益变化越小越好。

1.频率大小:频率越高一般价格越高。

但频率越高,频差越大,从综合角度考虑,一般工程师会选用频率低但稳定的晶振,自己做倍频电路。

总之频率的选择是根据需要选择,并不是频率越大就越好。

要看具体需求。

比如基站中一般用10MHz的恒温晶振(OCXO),因其有很
好的频率稳定性,属于高端晶振。

至于范围,晶振的频率做的太高的话,就会失去意义,因为有其他更好的频率产品代替。

2.频率稳定度:关键参数。

指在规定的工作温度范围内,与标称频率允许的偏差,用ppm(百万分之一)表示。

一般来说,稳定度越高或温度范围越宽,价格越高。

对于频率稳定度要求±20ppm或以上的应用,可使用普通无补偿的晶体振荡器。

对于介于±1 至±20ppm 的稳定度,应该考虑温补晶振TCXO 。

对于低于±1ppm 的稳定度,应该考虑恒温晶振OCXO。

3.电源电压:常用的有1.8V、2.5V、3.3V、5V等,其中3.3V应用最广。

4.输出:根据需要采用不同输出。

(HCMOS,SINE,TTL,PECL,LVPECL,LVDS,HSCL,PLL 等)每种输出类型都有它的独特波形特性和用途。

应该关注三态或互补输出的要求。

对称性、上升和下降时间以及逻辑电平对某些应用来说也要作出规定,根据客户需要我们可以帮助客户选型。

5.工作温度范围:工业级标准规定的-40~+85℃这个范围往往只是出于设计者们的习惯,倘若-20℃~+70℃已经够用,那么就不必去追求更宽的温度范围。

对于某些特殊场合如航天军用等,对温度有更苛刻的要求。

6.相位噪声和抖动:相位噪声和抖动是对同一种现象的两种不同的定量方式,是对短期稳定度的真实度量。

振荡器以及其它利用基波或谐波方式的晶体振荡器具有最好的相位噪声性能。

采用锁相环合成器产生输出频率的振荡器比采用非锁相环技术的振荡器一般呈现较差的相位噪声性能。

但相对的,拥有好的相位噪声和抖动的同时振荡器的设计复杂,体积大,频率低,造价高。

实际上相位噪声和抖动是短期频率稳定度的度量,所以一般越高端的晶振,即频稳越好的晶振,这些指标也相应越好。

7.牵引范围(VCXO):是针对VCXO的参数。

带有压控功能的晶振为(VCXO),即通过调节控制电压改变输出频率。

牵引范围为变化频率(增大或减少)与中心频率的比值。

此值一般用ppm表示。

通常牵引范围大约为100 - 200ppm,取决于VCXO的结构和所选择的晶体。

8.封装:与其它电子元件相似,石英振荡器亦采用愈来愈小型的封装。

通常,较小型的器件比较大型的表面贴装或穿孔封装器件更昂贵。

所以,小型封装往往要在性能、输出选择和频率选择之间作出折衷。

9.老化率:随着时间的推移,频率值随着变化的大小,有年老化和日老化两种指标。

SJK的高精度恒温晶振(OCXO)可以达到10-8 ppm/年。

相关主题