当前位置:文档之家› 4场效应管解析

4场效应管解析

2 I DO KnVT 是vGS=2VT时的iD
交流参数 低频互导gm
iD gm vGS
2
VDS
考虑到 iD Kn ( vGS VT ) 则
iD gm vGS
( vGS VT )
iD Kn
VDS
[Kn ( vGS VT )]2 vGS
VDS
2K n ( vGS VT ) 2 KniD
栅源电压VGS对漏极电流ID的控制作用
定义: 开启电压( UT)——刚刚产生沟道所需的
栅源电压UGS。
N沟道增强型MOS管的基本特性:
uGS < UT,管子截止,
uGS >=UT,管子开启导通。
uGS 越大,沟道越宽,在相同的漏源电压uDS作 用下,漏极电流ID越大,输入电压 VGS 通过控制 沟道R从而控制输出电流 I D, 。
(2)恒流性:VGS=C,输出电流iD 制输出电流(平方律关系) i D I DSS 1 vGS
V
受控性表现在: △ iD /△ uGS = gm 即: △ iD = gm △ uGS 2 (放大原理) P
基本上不受输出电压vDS影响。 V DS V GS V P 用途:可做放大器和恒流源。 IDSS 条件:(1)源端沟道未夹断
一个重要参数——跨导gm: gm=iD/uGS u
DS=const
(单位mS)
gm的大小反映了栅源电压对漏极电流的控制作用。 在转移特性曲线上, gm为曲线的斜率。 在输出特性曲线上也可求出gm。
i D (mA) i D (mA)
4 3
uGS=6V
=5V
4 3 2 1
u
DS
△ iD
2 1 10V
2. 结型场效应管的工作原理 (1)栅源电压(VGS)对沟道(iD)的控制作用(P158图4.1.3)
在栅源间加负电压VGS ,令VDS =0 ①当VGS=0时,为平衡PN结,导电 沟道最宽,沟道R呈线性。
②当│uGS│↑时,PN结反偏(ig=0), 耗尽层变宽(宽度向低渗杂区延 伸) ,导电沟道变窄,沟道电阻 增大(线性变化)。 ③当│uGS│↑↑到一确切值时 ,沟道 会完全合拢——完全夹断→沟道 R→∞。 定义: 夹断电压UGS(off)/UP——使导电沟 道完全合拢(消失/完全夹断)所 需要的栅源电压uGS。
vGSQ 2 I DSS 1 V P gm VP 2 I DSS gm VP I DQ I DSS
VP vGS VP vGS
0
0
结型场效应管的特性小结
N 沟 道 耗 尽 型
结 型 场 效 P 应 沟 管 道
耗 尽 型
自测:P165 复习思考题
几点结论:P160下面几行文字
• 1、沟道中只有一种类型的多数载流子参与导电, 所以场效应管也称为单极型三极管。
2、JFET栅极、沟道间的PN结是反向偏置的, 因此,其iG≈0,输入R很高>107。
3、JFET是VCCS器件。 4、予夹断前, iD与VDS呈近似线性关系,予 夹断后,趋向饱和(恒流区)
vGS 0时, iD 0。 增强型: 没有导电沟道, vGS 0时, iD 0。 耗尽型: 存在导电沟道,
N沟道 P沟道 增强型
N沟道 P沟道 耗尽型
一、N沟道增强型场效应管(EMOS)
1、结构
源极s
两个PN结, 无沟道,4个
电极:漏极D, 源极S,栅极G和 衬底B。
-
栅极g
漏极d
预夹断前, uDS↑→iD ↑。 预夹断后, uDS↑→iD 几乎不变 (IDSS,VGS=0时的漏极饱和电流)。
sss s
(3)栅源电压uGS和漏源电压uDS共同作用 结论:沟道R受VGS控制,从而ID受VGS的控制(放大)
iD=f( uGS 、uDS),可用两组特性曲线来描绘。
JFET工作原理实验图
V
GS
VP
(2)漏端沟道予夹断
V DS V GS V P
Ⅱ 、可变电阻区 预夹断点轨迹
(非饱和区或欧姆区) 特点:
V
DS
V GS V P
(1)当vGS 为定值时,iD 是 vDS 的线性函数,管子的漏源间 呈现为线性电阻,且其阻值 受 vGS 控制,每一根线的k随vGS 的变化而变化,几根线不重合, 沟道R↑ ,k不一样↓.
3. V-I 特性曲线及大信号特性方程 (1)输出特性及大信号特性方程P203
i D f (v DS ) vGS const.
① 截止区
当 vGS < VT 时,导电沟道尚 未形成, iD = 0 ,为截止工
作状态。
3. V-I 特性曲线及大信号特性方程 ② 可变电阻区 rdso是一个受vGS控制的可变电阻 2 iD Kn [2(v GS VT )v DS v DS ]
BJT是一种电流(压)控制元件(iB~ iC),工作时,多子和 少子都参与运行,被称为双极型晶体管(半导体三极管)。
场效应管( Field Effect Transistor 简称 FET )是一种电 压控制器件(uGS~ iD).工作时只有一种载流子(沟道中多子 漂移)参与导电,故称单极型晶体管(场效应三极管) 。 FET 因其制造工艺简单,功耗小,温度特性好,输 入电阻极高等优点,得到了广泛应用-大规模集成电路。

③当VGS≥VT时,衬底中的电子
进一步被吸至栅极下方的P型衬
V
DS
ID
底表层,使衬底表层中的自由
电子数量大于空穴数量,该薄 层转换为N型半导体,称为反
型层。形成N源区到N漏区
的N型沟道。把开始形成反型层的VGS值称为该管的开 启电压VT。这时,若在漏源间加电压 VDS,就能产生漏 极电流 I D,即管子开启。 VGS值越大,沟道内自由电子 越多,沟道越宽,沟道电阻越小,在同样 VDS 电压作用 下, I D 越大。这样,就实现了输入电压 VGS 对输出电 流 I D 的控制。
其中
nCox W Kn 2 L
(2).转移特性曲线— VGS对ID的控制特性
ID=f(VGS)VDS=常数
水平沟道右端出现预夹断,漏端 沟道消失,——漏端沟道预夹断, uDS 主要降予夹断区上→有利于 载流子漂移。
增强型MOSFET的工作原理
ID 存在→漏端沟道出现预夹断 点开始, ID基本不随VDS增加 而变化(与其无关)(不叫IDSS)。
MOSFET的ig真正为0,GS对 外呈现的R→∞(> 109 ,最 高可达 1015 )
iD 2Kn ( vGS VT ) vDS
rdso
1 2K n ( vGS VT )
其中
Kn Kn 2 W n Cox W L 2 L
n :反型层中电子迁移率
Cox :栅极(与衬底间)氧 化层单位面积电容
' Kn nCox 本征电导因子
dd d d ii d i
d
id d
uDS↑↑ →靠近漏极处的耗尽层加宽,
沟道变窄,呈楔形分布。 ③当uDS ↑↑↑,使uGD=uG S- uDS=UP时,在
gg g g
p+ p+ p+ p+ N N N
p+ p+ + pp+
VDD V VDD DD V DD
靠漏极处夹断——预夹断, iD ?。 ④uDS再↑↑,预夹断点下移---预夹断区。
V V V GG GG GG
d d d
g g g
+ p ++ p p
+ ++ p p p
N NN
ss s
(2)漏源电压(VDS)对沟道的控制作用(P159图4.1.4)
在漏源间加电压uDS ,令uGS =0 由于uGS =0,所以导电沟道最宽。 ①当uDS=0时, iD=0。 ②uDS↑→iD ↑(线性)
N+
g
-d
二氧化硅
N+
P衬底
②当 0<VGS<VT (开启电压)时,
b
通过栅极和衬底间的电容作用,将栅极下方P型衬底 表层的空穴向下排斥,同时,使两个N区和衬底中的 自由电子吸向衬底表层,并与空穴复合而消失,结 果在衬底表面形成一薄层负离子的耗尽层。漏源间仍 无载流子的通道。管子仍不能导通,处于截止状态。
绝缘栅型场效应管 IGFET/MOSFET 耗尽型 FET分类:
增强型
N沟道 P沟道 N沟道 P沟道
结型场效应管 (JFET)
N沟道 (耗尽型) P沟道
4.1 结型场效应管(JFET)
1. 结型场效应管的结构 (以N沟道为例): 两个PN结夹着一个N型沟道。三个 电极: g(G):栅极←→BJT B s(S):源极←→BJT E d(D):漏极←→BJT C 符号:
P沟道场效应管工
作时,极性相反,
沟道中的多子为空穴。
(动画2-9)
3.伏安特性曲线(P160)
①输出特性曲线
iD f (VDS ) V
GS
C
(动画2-6)
IDSS
V
DS
V GS V P
①输出特性曲线
iD f (VDS ) V
GS
C
(动画2-6)
Ⅰ 、 恒流区:(又称饱和区或放大区) 特点:(1)受控性: 输入电压vGS控
结型场效应管的缺点:
1. 栅源极间的电阻虽然可达107以上,但在 某些场合仍嫌不够高。 2. 在高温下,PN结的反向电流增大,栅源 极间的电阻会显著下降。 3. 栅源极间的PN结加正向电压时,将出现 较大的栅极电流。
绝缘栅场效应管可以很好地解决这些问题。
4.3
金属-氧化物-半导体场效应管
绝缘栅型场效应管Metal Oxide Semiconductor —— MOSFET/ IGFET 分为 增强型 N沟道、P沟道 耗尽型 N沟道、P沟道
相关主题