当前位置:文档之家› 高频变压器的设计

高频变压器的设计

图1 开关电源原理图
本文介绍了一款如图1所示的DC—DC变换器,输入电压为直流24V,输出电压分别为5V及12V的多路直流输出。

要求各路输出电流都在lA以上,核心器件是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片UC3842,最高工作频率可达200k Hz。

根据锌锰铁氧体合金的优异电磁性能,通过具体示例介绍工作频率为100kHz的高频开关电源变压器的设计及注意事项。

2变压器磁芯的选择与工作点的确定
2.1 磁芯材料的选择
从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。

磁芯的材料只有从坡莫合金、
铁氧体材料、钴基非晶态合金和超微晶合金几种材料中来考虑。

坡莫合金、钴基非晶态价格高,约为铁氧体材料的数倍,而饱和磁感应强度
B s也不是很高,且加工工艺复杂。

考虑到我们所要求的电源输出功率并不高,大约为30W,因此,综合几种材料的性能比较,我们还是选择了饱和磁感应强度B s较高,温度稳定性好,价格低廉,加工方便的性价比较低的锌锰铁氧体材料,并选以此材料作为框架的E I28来绕制本例中的脉冲变压器。

2.2工作点的确定
根据相关资料,EC35输出功率为50W,饱和磁感应强度大约在2 000Gs左右。

买来的磁芯,由于厂家提供的磁感应强度月,值并不准确,可用图2所提供的方式粗略测试一下。

将调压器接至原线圈,用示波器观察副线圈输出电压波形。

将原线圈的输入电压由小到大慢慢升高,直到示波器显示的波形发生奇变。

此时,磁芯已饱和,根据公式:
U=4.44f N1Φm可推知在工频时的Φm值。

要求不高时,可根据测算出的Φm,粗略估算出原线圈的匝数,。

图2 工作点测试示意图
3 变压器主要参数的计算
本例中的变换器采用单端反激式工作方式,单端反激变换器在小
功率开关电源设计中应用非常广泛,且多路输出较方便。

单端反激电源的工作模式有两种:电流连续模式和电流断续模式。

前者适用于较小功率,副边二极管存在没有反向恢复的问题,但MOS管的峰值电流相对较大;后者MOS管的峰值电流相对较小,但存在副边二极管的反向恢复问题,需要给二极管加吸收电路。

这两种工作模式可根据实际需求来选择,本文采用了后者。

设计变压器时大多需要考虑下面问题:变换器频率f(H2);初级电压U1(V),次级电压U2(V);次级电流i2(A);绕组线路参数n1、,n
(℃);绕组相对电压降u;环境温度τHJ(℃);绝缘材料密2;温升τ
度γz(g/cm3)
1)根据变压器的输出功率选取铁芯,所选取的铁芯的户,值应等于或大于给定值。

2)绕组每伏匝数
(1)
S T是铁芯的截面积;k T是窗口的填充系数;
3)初级绕组电势
E1=U1(1-) (2)
4)初级绕组匝数
W1=W0E l (3)
5)次级绕组电势
E2i=U2i (1+) (4)
6)次级绕组匝数
W2i=W0E2i (5)
7)初级绕组电流
(6)
8)次级绕组电流
(7)
其中,n1、n2:分别是初级绕组和次级绕组的每层匝数。

9)初级绕组线径
(8)
10)次级绕组线径
(9)
其中,j是电流密度。

详细的变压器设计方法与计算相当复杂,本文参照经验公式,依据下面的步骤设计了本例转换器中的高频变压器。

3.1 确定变压器的变比
根据输出电压U0的关系式
(10)
得变比为
(11)
式中U D为整流器输出的直流电压。

本例中U D=24V,f为100kHz,t ON取0.5;n=2。

3.2 计算初级线圈中的电流
已知输出直流电压U0=±12V、5V,负载电流均为I0=lA,则输出功率
P0=P1+P2+P3=29W
开关电源的效率η一般在60~90%之间,本例取η=0.65,则输入功率为。

相关主题