高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2m∆ 的压缩气体,每级总质量均为2M,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。
喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。
【答案】116.54m【解析】对模型甲: ()00M m v mv =-∆-∆甲21085=200.5629v h m m g =≈甲甲对模型乙第一级喷气: 10022m mM v v ∆∆⎛⎫=-- ⎪⎝⎭乙 解得: 130m v s=乙2s 末: ‘11=10m v v gt s-=乙乙22111'=402v v h m g-=乙乙乙对模型乙第一级喷气:‘120=)2222M M m m v v v ∆∆--乙乙( 解得: 2670=9mv s 乙 22222445=277.10281v h m m g =≈乙乙可得: 129440+=116.5481h h h h m m ∆=-≈乙乙甲。
4.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B =(3)当所加磁场22TB=,2221mcm vrqB==要让Q从gh边穿出磁场且在磁场中运动的时间最长,则Q在磁场中运动轨迹对应的圆心角最大,则当gh边或ef边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d rrα-︒-=解得:127α=︒运动周期:222mTqBπ=则Q在磁场中运动的最长时间:222127127•s360360360mt TqBπαπ===︒此时对应的β角:190β=︒和2143β=︒5.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a ,由动能定理得:代入数据解得a 与b 碰前速度:;a 、b 碰撞过程系统动量守恒,以a 的初速度方向为正方向, 由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a 以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B 端距挡板的距离:;(3)由能量守恒得:,解得滑块a 与车相对静止时与O 点距离:;考点:动量守恒定律、动能定理。
【名师点睛】本题考查了求速度、距离问题,分析清楚运动过程、应用动量守恒定律、动能定理、能量守恒定律即可正确解题。
6.如图,一质量为M 的物块静止在桌面边缘,桌面离水平地面的高度为h.一质量为m 的子弹以水平速度v 0射入物块后,以水平速度v 0/2 射出.重力加速度为g.求: (1)此过程中系统损失的机械能;(2)此后物块落地点离桌面边缘的水平距离.【答案】(1)20138m E mv M ⎛⎫∆=- ⎪⎝⎭ (2)02mv hs M g=【解析】 【分析】 【详解】试题分析:(1)设子弹穿过物块后物块的速度为V ,由动量守恒得mv0=m+MV ①解得②系统的机械能损失为ΔE=③由②③式得ΔE=④(2)设物块下落到地面所需时间为t,落地点距桌面边缘的水平距离为s,则⑤s=Vt ⑥由②⑤⑥得S=⑦考点:动量守恒定律;机械能守恒定律.点评:本题采用程序法按时间顺序进行分析处理,是动量守恒定律与平抛运动简单的综合,比较容易.7.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE 损1=f·d=mv 20(1分),由能量守恒得:12mv 21+12mV 21=12mv 20-ΔE 损1(2分) 且考虑到v 1必须大于V 1,解得:v 1=13()26+v 0 设子弹射入第二块钢板并留在其中后两者的共同速度为V 2, 由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)2+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解8.如图所示,光滑平行金属导轨的水平部分处于竖直向下的B=4T 的匀磁场中,两导轨间距L=0.5m ,导轨足够长金属棒a 和b 的质量都为m=1kg ,电阻1a b R R ==Ω.b 棒静止于轨道水平部分,现将a 棒从h=80cm 高处自静止沿弧形轨道下滑,通过C 点进入轨道的水平部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求a 、b 两棒的最终速度大小以及整个过程中b 棒中产生的焦耳热(已知重力加速度g 取10m/s 2)【答案】 2m/s 2J 【解析】a 棒下滑至C 点时速度设为v 0,则由动能定理,有: 20102mgh mv =- (2分)解得v 0=4m/s ; (2分)此后的运动过程中,a 、b 两棒达到共速前,两棒所受安培力始终等大反向,因此a 、b 两棒组成的系统动量守恒,有:()0m v m m v =+ (2分)解得a 、b 两棒共同的最终速度为v =2m/s ,此后两棒一起做匀速直线运动; 由能量守恒定律可知,整个过程中回路产生的总的焦耳热为: ()2201122Q mv m m v =-+ (2分) 则b 棒中的焦耳热12b Q Q =(2分) 联立解得:Q b =2J (2分)9.如图甲所示,用半径相同的A 、B 两球的碰撞可以验证“动量守恒定律”.实验时先让质量为1m 的A 球从斜槽上某一固定位置C 由静止开始滚下,进入水平轨道后,从轨道末端水平抛出,落到位于水平地面的复写纸上,在下面的白纸上留下痕迹.重复上述操作10次,得到10个落点痕迹.再把质量为2m 的B 球放在水平轨道末端,让A 球仍从位置C 由静止滚下,A 球和B 球碰撞后,分别在白纸上留下各自的落点痕迹,重复操作10次.M 、P 、N 为三个落点的平均位置,未放B 球时,A 球的落点是P 点,O 点是水平轨道末端在记录纸上的竖直投影点,如图乙所示.(1)在这个实验中,为了尽量减小实验误差,两个小球的质量应满足______(填“>”或“<”).(2)除了图中器材外,实验室还备有下列器材,完成本实验还必须使用的两种器材是_____.A .秒表B .天平C .刻度尺D .打点计时器 (3)下列说法中正确的是_________.A .如果小球每次从同一位置由静止释放,每次的落点一定是重合的B .重复操作时发现小球的落点并不重合,说明实验操作中出现了错误C .用半径尽量小的圆把10个落点圈起来,这个圆的圆心可视为小球落点的平均位置D .仅调节斜槽上固定位置C ,它的位置越低,线段OP 的长度越大(4)在某次实验中,测量出两个小球的质量1m 、2m ,记录的落点平均位置M 、N 几乎与OP 在同一条直线上,测量出三个落点位置与O 点距离OM 、OP 、ON 的长度.在实验误差允许范围内,若满足关系式__________________,则可以认为两球碰撞前后在OP 方向上的总动量守恒;若碰撞是弹性碰撞,则还需满足的关系式是________________.(用测量的量表示)(5)某同学在做这个实验时,记录下小球三个落点的平均位置M 、P 、N ,如图丙所示.他发现M 和N 偏离了OP 方向.这位同学猜想两小球碰撞前后在OP 方向上依然动量守恒,他想到了验证这个猜想的办法:连接OP 、OM 、ON ,作出M 、N 在OP 方向上的投影点M '、N '.分别测量出OP 、OM '、ON '的长度.若在实验误差允许的范围内,满足关系式:_____则可以认为两小球碰撞前后在OP 方向上动量守恒.【答案】> BC C 112m OP m OM m ON =+ 222112m OP m OM m ON =+112m OP m OM m ON ''=+【解析】 【分析】 【详解】(1)为了防止入射球碰后反弹,应让入射球的质量大于被碰球的质量;(1)小球离开轨道后做平抛运动,小球在空中的运动时间相同,小球的水平位移与其初速度成正比,可以用小球的水平位移代替小球的初速度,实验需要验证:101122m v m v m v =+,因小球均做平抛运动,下落时间相同,则可知水平位移x =vt ,因此可以直接用水平位移代替速度进行验证,故有112m OP m OM m ON ⋅=⋅+⋅ ,实验需要测量小球的质量、小球落地点的位置,测量质量需要天平,测量小球落地点的位置需要毫米刻度尺,因此需要的实验器材有:BC ;(3)由于各种偶然因素,如所受阻力不同等,小球的落点不可能完全重合,落点应当比较集中,但不是出现了错误,故AB 错误;由于落点比较密集,又较多,每次测量距离很难,故确定落点平均位置的方法是最小圆法,即用尽可能最小的圆把各个落点圈住,这个圆的圆心位置代表落点的平均位置,故C 正确;仅调节斜槽上固定位置C ,它的位置越低,由于水平速度越小,则线段OP 的长度越小,故D 错误.故选C ; (4)若两球相碰前后的动量守恒,则101122m v m v m v =+,又012,,OP v t OM v t ON v t ===,代入得:112m OP m OM m ON ⋅=⋅+⋅,若碰撞是弹性碰撞,满足机械能守恒,则:222101122111222m v m v m v =+ ,代入得;222112m OP m OM m ON ⋅=⋅+⋅;(5)如图所示,连接OP 、OM 、ON ,作出M 、N 在OP 方向上的投影点M ′、N ′,如图所示;分别测量出OP 、OM ′、ON ′的长度.若在实验误差允许范围内,满足关系式112m OP m OM m ON ''⋅=⋅+⋅ 则可以认为两小球碰撞前后在OP 方向上动量守恒.10.如图所示,内壁粗糙、半径R =0.4 m 的四分之一圆弧轨道AB 在最低点B 与光滑水平轨道BC 相切。