数字电子时钟毕业设计Revised on November 25, 2020毕业设计(论文)题目:多功能数字电子时钟毕业时间:二O一二年七月学生姓名:梁宇指导教师:林喆班级: 09电缆(1)班2011 年 10月18日摘要数字钟实际上是一个对标准频率(1Hz)进行计数的计数电路。
振荡器产生的时钟信号经过分频器形成秒脉冲信号,秒脉冲信号输入计数器进行计数,并把累计结果以“时”、“分”、“秒”的数字显示出来。
秒计数器电路计满60后触发分计数器电路,分计数器电路计满60后触发时计数器电路,当计满24小时后又开始下一轮的循环计数。
一般由振荡器、分频器、计数器、译码器、数码显示器等几部分组成。
振荡电路:主要用来产生时间标准信号,因为时钟的精度主要取决于时间标准信号的频率及稳定度,所以采用石英晶体振荡器。
分频器:因为振荡器产生的标准信号频率很高,要是要得到“秒”信号,需一定级数的分频器进行分频。
计数器:有了“秒”信号,则可以根据60秒为1分,24小时为1天的进制,分别设定“时”、“分”、“秒”的计数器,分别为60进制,60进制,24进制计数器,并输出一分,一小时,一天的进位信号。
译码显示:将“时”“分”“秒”显示出来。
将计数器输入状态,输入到译码器,产生驱动数码显示器信号,呈现出对应的进位数字字型。
由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路可以对分和时进行校时。
另外,计时过程要具有报时功能,当时间到达整点前10秒开始,蜂鸣器1秒响1秒停地响5次。
为了使数字钟使用方便,在设计上使用了一个变压器和一个整流桥来实现数字钟电能的输入,使得可以方便地直接插入220V的交流电就可以正常地使用了。
关键词数字钟振荡计数校正报时目录1 设计目的 (4)2 设计任务 (4)设计指标 (4)设计要求 (4)3数字电子钟的组成和工作原理 (4)数字钟的构成 (4)原理分析 (4)数字点钟的基本逻辑功能框图 (5)4.数字钟的电路设计 (5)电源电路的设计 (5)秒信号发生器的设计 (6)4.2.1方案一 (6)4.2.2方案二 (6)4.2.3两个方案的比较 (8)时间计数电路的设计 (9)译码显示电路 (11)正点报时电路的设计 (13)校时电路的设计 (14)5数字电子钟的整体电路 (15)6电路的装配与调试过程 (15)电路焊接 (16)调试过程 (16)7收获、体会 (17)致谢 (18)参考文献 (18)1设计目的1.在学完了《电子技术基础》课程的基本理论,基本知识后,能够综合运用所学理论知识、拓宽知识面,系统地进行电子电路的工程实践训练,锻炼动手能力,培养工程师的基本技能,提高分析问题和解决问题的能力。
2.熟悉集成电路的引脚安排,掌握各芯片的逻辑功能及使用方法了解面包板结构及其接线方法,了解数字钟的组成及工作原理。
学会检查电路的故障与排除故障的一般方法3.学会检查电路的故障与排除故障的一般方法,掌握虚拟设计,学会使用一种电路分析软件(EWB或PSPICES)在计算机上进行电路设计与分析的方法。
2设计任务设计指标1.时间计数电路采用24进制,从00开始到23后再回到00;2.各用2位数码管显示时、分、秒;3.具有手动校时、校分功能,可以分别对时及分进行单独校时,使其校正到标准时间;4.计时过程具有报时功能,当时间到达整点前10秒开始,蜂鸣器1秒响1秒停地响5次。
5.为了保证计时的稳定及准确,须由晶体振荡器提供时间基准信号。
设计要求1.集中进行查找资料,请教指导老师,确定设计方案;2.根据选定方案确定实现设计要求的基本电路和扩展电路,画出电路原理图(或仿真电路图);3.根据经济原则选择元器件及参数;4..在软件中进行电路的链接、调试、测试电路性能,整理撰写设计整体的过程。
3数字电子钟的组成和工作原理3.1数字钟的构成数字钟一般由振荡器、分频器、计数器、译码器、显示器、较时电路、报时电路等部分组成,这些都是数字电路中应用最广的基本电路3.2原理分析数字钟实际上是一个对标准频率(1Hz)进行计数的计数电路。
振荡器产生的时钟信号经过分频器形成秒脉冲信号,秒脉冲信号输入计数器进行计数,并把累计结果以“时”、“分”、“秒”的数字显示出来。
秒计数器电路计满60后触发分计数器电路,分计数器电路计满60后触发时计数器电路,当计满24小时后又开始下一轮的循环计数。
由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路可以对分和时进行校时。
另外,计时过程要具有报时功能,当时间到达整点前10秒开始,蜂鸣器1秒响1秒停地响5次。
3.3数字点钟的基本逻辑功能框图图1 数字钟的基本逻辑框图4数字钟的电路设计下面将介绍设计电路具体方案。
其中包括电源电路的设计、秒信号发生器的设计、时间计数电路的设计、译码驱动显示电路的设计、正点报时电路的设计、校时电路的设计几个部分。
4.1 电源电路的设计用一个变压器把220V的家用交流电压变为9V的小电压。
利用二极管单向导通的原理,用四个二极管构成一个桥堆,对交流电进行半波整形,再经过一个电容对其整形,变成供这个近似直流的电压,但由于还有许多文波,再用一个W7805稳压管变成5V的稳定直流电压,供这个电路的使用。
如图2。
图2电源电路4.2 秒信号发生器的设计通过查找资料,得到了两个不同的秒信号发生器的设计方案。
4.2.1方案一 555构成的多谐振荡器如图3电容C1放电时间为:t1=R2*C1*ln2,充电时间为:t2=(R1+R2)*CI*ln2,则其振荡频率为f=1/(t1+t2)。
选择适当的R1、R2、C1值可使f=1HZ。
图3 555构成的多谐振荡器4.2.2方案二晶体振荡分频电路石英晶体振荡电路1.采用频率fs=32768Hz的石英晶体。
D1、D2是反相器,D1用于振荡,D2用于缓冲整形。
Rf为反馈电阻(10-100M Ω),反馈电阻的作用是为CMOS反相器提供偏置,使其工作在放大状态。
C1是频率微调电容,改变C1可对振荡器频率作微量调整,C1一般取5-35pF。
C2是温度特性校正用的电容,一般取20-405pF,电容C1、C2与晶体共同构成Ⅱ型网络,完成对振荡器频率的控制,并提供必要的1800相移。
最后输出fs=32768Hz图4 石英晶体振荡电路2.多级分频电路将32 768Hz脉冲信号输入到CD4060(内部结构如图4-4)组成的脉冲振荡的14位二进制计数器,所以从最后一级Q14输出的脉冲信号频率为:32768/214 = 32768/16384 = 2Hz 如图6。
再经过二次分频,得到1Hz的标准信号脉冲,即秒脉冲如图7。
图5 CD4060内部结构图6 脉冲分频电路图7 秒信号原理图4.2.3两个方案的比较1.采用555多谐振荡器优点:555内部的比较器灵敏度较高,而且采用差分电路形式,它的振荡频率受电源电压和温度变化的影响很小。
缺点:要精确输出1Hz脉冲,对电容和电阻的数值精度要求很高,所以输出脉冲既不够准确也不够稳定。
2.采用晶体振荡分频电路优点:由石英晶体的阻抗频率响应可知,它的选频特非常好,有一个极为稳定的串联谐振频率fs,且等效品质因数Q很高。
只有频率为fs的信号最容易通过,且其他频率的信号均会被晶体所衰减。
3.比较结果振荡器是数字钟的核心,振荡器的稳定度及频率的精确度决定了数字钟计时的准确程度。
为了达到设计要求,获取更高的计时精度,选用晶体振荡器构成振荡器电路。
一般来说,振荡器的频率越高,计时精度越高。
如图8。
图8 晶体振荡及分频电路4.3时间计数电路的设计秒信号经秒计数器、分计数器、时计数器之后,分别得到“秒”个位、十位、“分”个位、十位以及“时”个位、十位的计时输出信号,然后送至译码显示电路,以便实现用数字显示时、分、秒的要求。
“秒”和“分”计数器应为六十进制,而“时”计数器应为二十四进制。
采用10进制计数器74LS90来实现时间计数单元的计数功能,其为双2-5-10异步计数器,并且每一计数器均有异步清零端(高电平有效)。
4.3.1“分”、“秒”六十进制计数器选用两块74SL290采用异步清零的方法完成60进制。
以“秒”计数为例:计秒时,将秒个位计数单元的QA与CPB(下降沿有效)相连,将74SL290连接成10进制计数器,CPA(下降沿有效)与1HZ秒输入信号相连,QD可作为向上的进位信号与十位计数单元的CPA相连。
秒十位计数单元为6进制计数器,需要进制转换。
将10进制计数器转换为6(0110)进制计数器,当十位计数器计到QD QC QB QA为0110时,同时对秒的个位和十位进行清0,另外QC可作为向上的进位信号与分个位的计数单元的CPA相连。
其具体连接图如图9CPA相连。
其具体连接图如图9图9 六十进制计数器4.3.2二十四进制计数器同样可以选用两块74SL290采用异步清零的方法完成24进制计数如图10图10二十四进制计数器4.4译码显示电路译码显示电路是将计数器输出的8421 BCD码译成数码管显示所需要的高低电平,我们采用阴极七段数码管,引脚如图11。
其则译码电路就应选接与它配套的共阴极七段数码驱动器。
译码显示电路可采用CD4511BC-7段译码驱动器,其芯片引脚如图12。
译码器A、B、C、D与十进制计数器的四个输出端相连接,a、b、c、d、e、f、g即为驱动七段数码显示器的信号。
根据A、B、C、D所得的计数信号,数码管显示的相对应的字型。
其具体电路图如图13。
图11 阴极七段数码管图12 芯片CD4511BC-7段译码驱动器引脚图13 译码显示电路4.5正点报时电路的设计要求当时间到达整点前10秒开始,蜂鸣器1秒响1秒停地响5次。
即当时间达到xx时59分50秒时蜂鸣器开始响第一次,并持续一秒钟,然后停鸣一秒,这样响五次。
在59分50秒到59分59秒之间,只有秒的个位计数,分的十位QD QC QB QA输出0101,个位QD QC QB QA 输出1001,秒的十位QD QC QB QA 输出0101均不变,而秒的个位QA计数过程中输出在0和1之间转。
所以可以利用与非门的相与功能,把分十位的QC 、QA ,分个位的QD、QA,秒十位的QC、QA 和秒个位的QA相“与非”作为控制信号控制与非门的开断,从而控制蜂鸣器的响和停。
如图14。
图14 整点报时电路4.6校时电路的设计时钟出现误差时,需校准。
校对时间总是在标准时间到来之前进行,分四个步骤:首先把小时计数器置到所需的数字;然后再将分计数器置到所需数字;在此同时或之后,将秒计数器在零时停计数,处于等待启动;当选定的标准时刻到达的瞬间,按起动按钮,电路则从所预置时间开始计数。
由此可知,校时电路应具有预置小时,预置分、等待启动、计时四个阶段,因此,我们设计的校时电路,方便、可靠地实现这四个阶段所要求的功能。