非均匀介质中光线的传输4.1引言:傍轴方程在第三章里,我们得到了在折射率为n 0=c /v 的均匀介质中传输光场的相位部分所满足的亥姆霍兹方程,其中c 为真空中光速,v 是光束在介质中的传输速度:020222222=+∂∂+∂∂+∂∂p p p p k z y x ϕϕϕϕ, vk 00ω=4.1.1如果把Ψp 写成)exp(),,(),,(0z jk z y x z y x e p -=ϕϕ 4.1.2并且假设Ψe 是z 的缓变函数,即0/k zee 〈〈∂∂ϕϕ 4.1.3就可得到Ψe 的傍轴波动方程e t e jk z ϕϕ2021/∇=∂∂ 4.1.4 其中,(∇t )2为横向拉普拉斯算子2222yx ∂∂+∂∂,对方程4.1.4进行傅里叶变换得到以x ,y 为变量的常微分方程e y x e k k k j dz d Φ+=0222)(ϕ 4.1.5 解该方程课得到与下述方程类似的旁轴传输函数]2)(exp[),,(022k zk k j z k k H y x y x e += 4.1.6当我们考虑光波在传播常数或者折射率是位置的函数的介质中传输时,这种折射率渐变效应是由材料本身的侧面(例如由折射率渐变光纤或介质的三阶非线性效应决定)或者三阶非线性效应导致的,傍轴方程可写成e e t e nk j jk z ϕϕϕ02021/∆-∇=∂∂ 4.1.7 其中△n 是相对于主折射率n 0的偏离量。
当传播常数或者波数是与位置(x , y , z )有关的方程时,如光栅、光纤或者是折射率与光强有关的介质是,可以把标量波方程4.1.4进行修正得到4.1.7.旁轴传输方程4.1.7是一个偏微分方程,不一定有解析解。
但在某些特殊情况下,如△n 的空间变化率是确定的或者在非线性光学里,可以用精确的积分或者逆散射法寻找该偏微分方程(PDE )的特殊解。
接下来,我们首先将讨论针对这些情况的一些精确解和解析解。
其中数值的方法经常被用来分析光束在复杂介质(光纤,体积衍射光栅,克尔介质以及光致折射率变化(PR )介质等)中的传输情况,且大部分的数值研究方法都可以用来分析这些情况。
拟谱方法由于在计算过程中具有速度优势,经常被用来进行有限元分析。
光束的分步传输法即为拟谱方法的一种,接下来我们讲首先讨论该方法并本章的后续部分给出由该方法得到的一些结果。
4.2光束的分步传输法要理解光束分步传输法(也称为光束传播法BPM )的原理,就有必要讲方程4.1.7写成如下形式ee S D z ϕϕ)ˆˆ(/+=∂∂ 4.2.1 其中,2021ˆt jk D∇=是表示光束衍射的线性微分算符,0Δˆnk j S -=是非线性算符(如公式4.1.7的结构)。
因此,一般来说,方程4.2.1解的形式可以写成),,(]Δ)ˆˆexp[()Δ,,(z y x z S D z z y x ee ϕϕ+=+ 4.2.2 如果算符Dˆ和S ˆ都与z 无关,那么对于这两个非互易算符有 ))](ˆ,ˆ[21ˆˆexp()ˆexp()ˆexp(2 +++=z S D z S z D z S z D∆∆∆∆∆ 4.2.3 根据Baker-Hausdorff 公式,Dˆ和S ˆ的关系可表示为[]D S S D S D ˆˆˆˆˆ,ˆ-=。
因此有△z 的二阶公式)ˆexp()ˆexp())ˆˆexp((z S z D z S D∆∆∆≅+ 4.2.4 上式说明了式4.2.1中的衍射项和各项同性算子是可以分别予以独立处理的。
在光谱的范围内可以更好地理解公式4.2.2中第一个算子的作用,该项是表示光束在z 和z+△z 之间衍射效应的传输算子。
第二个算子表示在非均匀介质中的无衍射传播情况。
光束的分步传输法流程图如图4.1所示。
4.3光束在线性非均匀介质中的传输此前仅仅讨论了光束在均匀介质中的传输,均匀介质的特性可以用介电常数ε来表示。
在非均匀介质中,电解质常数是一个与x , y , z 有关的方程,为了研究光束在非均匀介质中的传输,需要利用麦克斯韦方程组,并且重新推导这些方程,在无源介质中有)(222E tEE ⋅∇∇=∂∂-∇με 4.3.1由麦克斯韦方程可得(令ρ=0)0)(=∇⋅+⋅∇=⋅∇εεεE E E 4.3.2根据4.3.2,可将4.3.1变为0)(222=∇⋅∇+∂∂-∇εεμεE t E E 4.3.3如果空间变化率ε远小于传播场的波长,则上式左侧最后一项可以略去,变为0222=∂∂-∇tEE με 4.3.4其中,ε=ε(x ,y ,z ),需要说明的是,该方程中的电场强度要小于均匀介质中电场的均匀波方程,为了表示方便,将E 用通用的符号φ(x ,y ,z ,t )表示,则有0222=∂∂-∇tϕμεϕ,),,(z y x εε= 4.3.5为简单起见,令μ=μ0。
4.3.1 渐变折射率光纤中的光束传输对于各处折射率分布情况为n 2(x )=(n 0)2-n (2)x 2渐变折射率光纤,可以通过下述电解质方程将非均匀的情况包含进去)1)(0(),(),,(222h y x y x z y x +-==εεε 4.3.6图4.1 光束分步傅里叶算法流程图在这里,用折射率在横向是二维变化的。
我们想用上述方程来研究任意光束在非均匀介质中的传输情况,但将4.3.6代入4.3.5之后所得的方程并不是在任意初始条件情况下都存在解析解,因此,我们首先研究振幅或相位是具有任意横向分布的传输的平面波的解,有))](exp(),(Re[),,,(0kz t j y x t z y x e -=ωψψ 4.3.7上式中k 是任意的,将其代入4.3.5得0]),([20202=-+∇e e t k y x ψεμωψ 4.3.8用k 0来表示在介电常数为ε(0)的均匀介质中传输的平面波的传输常数2/1000)]0([εμω=k 4.3.9联立4.3.6,4.3.8和4.3.9并采用归一化的变量y hkx h k 2/102/10)(,)(==ηξ 4.3.10 可得0ˆ)]([ˆˆ222222=+-+∂∂+∂∂e e e ψηξληψξψ;),(ˆ),(ˆy x e e ψηξψ= 4.3.11 上式中220)(k h k k -=λ 4.3.12我们可以采用分离变量法来求解方程4.3.11。
令()()ηξηξϕY X e =),(ˆ并代入4.3.11可得到关于X 和Y 的两个常微分方程。
0)(22=-+∂∂X Xx ξλξ4.3.13a 0)(222=-+∂∂Y Yy ηλξ4.3.13b 上式中λx +λy =λ。
4.3.13中的每个方程与分析耦合谐振子问题的量子机制时采用的方程具有相同的形式。
方程4.3.13a 的解具有如下形式)2/exp()()(2ξξξ-=m m H X ,...2,1,0,12=+=m m x λ 4.3.14式中H mS 被称为厄米特多项式,其前几项如下所示;...24)(;2)(;1)(2210-===ξξξξξH H H 4.3.15X (ξ)的解被称为厄米特—高斯多项式,其前几项如图4.2所示,Y (η)具有类似的解。
因此,方程4.3.13有一般解)2/)(exp()()(),(ˆ),(ˆ22ηξηξηξψηξψ+-==n m em n e H H , 4.3.16 )1(2++==n m m n λλ,...2,1,0,=n m 4.3.17emn ψˆ被称为第mn 阶模,当m , n 分别为零是为基模,形式如下 ()()()2222/100/exp /2),(ωωπψy x y x e +-= 4.3.18其中2/10)2(k h =ω 4.3.19 第mn 阶模的传输常数k mn 可以由方程4.3.12和4.3.17求得))1(21(0202hk n m k k mn ++-= 4.3.20上式表明传输常数随模式阶数的增大而减小,即模阶次越高,相速度越大。
上述分析表明了多模光纤的模式特征,而光纤输入端任意的激励都可以通过分解上述特征模式来进行分析。
厄米特—高斯多项式提供了x ,y 方向正交的坐标系,使得分解过程变得简单。
多模光纤一个固有的缺点是不同模式以不同的速度传输,从而形成模式色散。
在多模光纤中传输的光脉冲比单模光纤中更容易色散或者比在单模光纤中传输速度快,因而单模光纤在光通信中用的更多。
单模光纤一般采用阶跃折射率结构,纤芯具有特定的折射率系数且大于包层的折射率系数。
包层的折射率一般经过选择使得纤芯内只存在一个模式,如,零阶模式。
如前所述,对任意入射光束传输的分析是非常困难的,一个有效的方法是采用数值分析法,即光传输发。
假设渐变折射率介质折射率的变化情况可表示为-4-3-2-101234图4.2 三个最低级的厄米特—高斯函数曲线)()(22)2(202y x n n x n +-= 4.3.21a或))(2/()(220)2(0y x n n n x n +-≅ 4.3.21bn 0表示介质的固有折射率,n (2)是一个测量值,表示折射率的变化量,在这种情况下,算符Sˆ变为 ))(2/(ˆ220)2(0y x n n jk S += 4.3.22 高斯光束在渐变折射率介质中的传输如图4.3所示,等高线显示了高斯光束初始时刻的截面分布、在传输过程中达到最小束腰半径时刻的横截面分布以及又回到原来束腰半径大小时刻的横截面分布,介质渐变的折射率导致了光束周期性的聚焦。
如前所述,存在一种在介质中传输而保持形状不变的特殊模式,即本征模式(与渐变折射率有关其具有具体宽度的高斯光束),这是由于光波的衍射效应和渐变折射率介质的导向效应相互抵消而使得光束截面形状不变。
该截面的等强度线如图4.4所示。
需要说明的是,在光波的传输过程中等高线是保持不变的。
用Matlab 语言实现图4.3和图4.4的程序如表4.1所示,该方法即4.2节中所述的分布传输法。
在该方法中,我们将光束的衍射效应在空间频率的范围内进行处理而将介质的非均匀性在空间域内进行处理。
材料的不均匀性导致分步传输法中每一步的相位都存在附加相位,附加相位的大小正比于k 0(n (2)/2n 0)(x 2+y 2),这一项正如式4.3.22所定义的算符Sˆ。
cab图4.3 高斯光束周期性自聚焦的等高线分布图 图4.4 一个基模在渐变折射率光纤中的等高线分布图4.3.2 光束在阶跃折射率光纤中的传输与渐变折射率光纤不同的是,阶跃型折射率光纤的折射率具有如下形式⎩⎨⎧><=)(,)(,)(cladding a r n core a r n r n clco4.3.23 其中r 是径向坐标,为了分析光束在光纤中的传输过程,从4.3.8出发,将它改写成如下形式[]0)(22202=-+∇e e t k r n k ψψ,),(φψψr e e = 4.3.24由于光纤具有柱状对称性,令)()(),(φϕψΦ=r R r e 4.3.25将4.3.25代入4.3.24可以得到直接的代数形式()[]2222220222211l d d k r n k r dr dR r dr R d r R =ΦΦ-=-+⎪⎪⎭⎫ ⎝⎛+φ4.3.26 其中l 是常数。