当前位置:文档之家› 高中物理模型-电磁场中的单杆模型

高中物理模型-电磁场中的单杆模型

模型组合讲解——电磁场中的单杆模型秋飏[模型概述]在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。

[模型讲解]一、单杆在磁场中匀速运动例1. (2005年河南省实验中学预测题)如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分别为0~10V 和0~3A 且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。

图1(1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少?(2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰ab 棒的水平向右的拉力F 2是多大? 解析:(1)假设电流表指针满偏,即I =3A ,那么此时电压表的示数为U =IR 并=15V , 当电压表满偏时,即U 1=10V ,此时电流表示数为I U R A 112==并设a 、b 棒稳定时的速度为v 1,产生的感应电动势为E 1,则E 1=BLv 1,且E 1=I 1(R 1+R 并)=20Va 、b 棒受到的安培力为F 1=BIL =40N解得v m s 11=/(2)利用假设法可以判断,此时电流表恰好满偏,即I 2=3A ,此时电压表的示数为U I R 22=并=6V 可以安全使用,符合题意。

由F =BIL 可知,稳定时棒受到的拉力与棒中的电流成正比,所以F I I F N N 2211324060===×。

二、单杠在磁场中匀变速运动例2. (2005年南京市金陵中学质量检测)如图2甲所示,一个足够长的“U ”形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。

一根质量为m =0.50kg 的均匀金属导体棒ab 静止在导轨上且接触良好,abMP 恰好围成一个正方形。

该轨道平面ab 棒的电阻为R =0.10Ω,其他各部分电阻均不计。

开始时,磁感应强度B T 0050=.。

图2(1)若保持磁感应强度B 0的大小不变,从t =0时刻开始,给ab 棒施加一个水平向右F 的大小随时间t 变化关系如图2乙所示。

求匀加速运动的加速度及ab 棒与导轨间的滑动摩擦力。

(2)若从t =0开始,使磁感应强度的大小从B 0开始使其以∆∆B t=0.20T/s 的变化率均匀增加。

求经过多长时间ab 棒开始滑动?此时通过ab ab 棒与导轨间的最大静摩擦力和滑动摩擦力相等)解析:(1)当t =0时,F N F F ma f 113=-=,当t =2s 时,F 2=8NF F B B Lat RL ma f 200--= 联立以上式得:a F F R B L tm s F F ma N f =-==-=()/210222141, (2)当F F f 安=时,为导体棒刚滑动的临界条件,则有:B Bt L RL F f ∆∆2= 则B T B B B tt t s ==+=41750,,∆∆.三、单杆在磁场中变速运动例3. (2005年上海高考)如图3行金属导轨相距1m ,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻。

匀速磁场方向与导轨平面垂直。

质量为0.2kg 保持良好接触,它们之间的动摩擦因数为0.25。

图3(1)求金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8W ,求该速度的大小;(3=2Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向。

(g =10m/s 2,sin37°=0.6,cos37°=0.8)解析:(1)金属棒开始下滑的初速为零,根据牛顿第二定律mg mg ma sin cos θμθ-= ①由①式解得 a m s =42/ ②(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F ,棒在沿导轨方向受力平衡: mg mg F sin cos θμθ--=0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率Fv P = ④由③、④两式解得:v m s =10/ ⑤(3)设电路中电流为I ,两导轨间金属棒的长为l ,磁场的磁感应强度为BI vBl R= ⑥ P I R =2 ⑦由⑥、⑦两式解得 B PR vlT ==04. ⑧ 磁场方向垂直导轨平面向上。

四、变杆问题例4. (2005年肇庆市模拟)如图4所示,边长为L =ABCD 和一金属棒MN 由粗细相同的同种材料制成,每米长电阻为R 0=1Ω/m ,以导线框两条对角线交点O 为圆心,半径r =0.5m 的匀强磁场区域的磁感应强度为B =0.5T ,方向垂直纸面向里且垂直于导线框所在平面,金属棒MN 与导线框接触良好且与对角线AC 平行放置于导线框上。

若棒以v =4m/s 的速度沿垂直于AC 方向向右匀速运动,当运动至AC 位置时,求(计算结果保留二位有效数字):图4(1)棒MN 上通过的电流强度大小和方向;(2)棒MN 所受安培力的大小和方向。

解析:(1)棒MN 运动至AC 位置时,棒上感应电动势为E B r v =2·线路总电阻R L L R =+()20。

MN 棒上的电流I E R= 将数值代入上述式子可得:I =0.41A ,电流方向:N →M(2)棒MN 所受的安培力:F B rI N F A A ==2021.,方向垂直AC 向左。

说明:要特别注意公式E =BLv 中的L 为切割磁感线的有效长度,即在磁场中与速度方向垂直的导线长度。

[模型要点](1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。

(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用E N t =∆Φ∆或E BLv =求感应电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。

[误区点拨] 正确应答导体棒相关量(速度、加速度、功率等)最大、最小等极值问题的关键是从力电角度分析导体单棒运动过程;而对于处理空间距离时很多同学总想到动能定律,但对于导体单棒问题我们还可以更多的考虑动量定理。

所以解答导体单棒问题一般是抓住力是改变物体运动状态的原因,通过分析受力,结合运动过程,知道加速度和速度的关系,结合动量定理、能量守恒就能解决。

[模型演练]1. (2005年大联考)如图5所示,足够长金属导轨MN 和PQ 与R 相连,平行地放在水平桌面上。

质量为m 的金属杆ab 可以无摩擦地沿导轨运动。

导轨与ab 杆的电阻不计,导轨宽度为L ,磁感应强度为B 的匀强磁场垂直穿过整个导轨平面。

现给金属杆ab 一个瞬时冲量I 0,使ab 杆向右滑行。

图5(1)回路最大电流是多少?(2)当滑行过程中电阻上产生的热量为Q 时,杆ab 的加速度多大?(3)杆ab 从开始运动到停下共滑行了多少距离?答案:(1)由动量定理I mv 000=-得v I m00= 由题可知金属杆作减速运动,刚开始有最大速度时有最大E BLv m =0,所以回路最大电流:I BLv R BLI mRm ==00 (2)设此时杆的速度为v ,由动能定理有: W mv mv A =-1212202而Q =-W A解之 v I m Q m =-0222 由牛顿第二定律F BIL ma A ==及闭合电路欧姆定律I BLv R =得 a B L v mR B L mRI m Q m ==-22220222 (3)对全过程应用动量定理有:-=-∑BI L t I i ·∆00而I t q i ·∆∑=所以有q I BL=0 又q I t E R t R t t R BLx R=====·∆∆∆Φ∆∆∆Φ 其中x 为杆滑行的距离所以有x I R B L =022。

2. (2005年南通调研)如图6所示,光滑平行的水平金属导轨MNPQ 相距l ,在M 点和P 点间接一个阻值为R 的电阻,在两导轨间OO O O 11''矩形区域内有垂直导轨平面竖直向下、宽为d 的匀强磁场,磁感强度为B r 的导体棒ab ,垂直搁在导轨上,与磁场左边界相距d 0。

现用一大小为F 、水平向右的恒力拉ab 棒,使它由静止开始运动,棒ab 在离开磁场前已经做匀速直线运动(棒ab 与导轨始终保持良好的接触,导轨电阻不计)。

求:图6(1)棒ab 在离开磁场右边界时的速度;(2)棒ab 通过磁场区的过程中整个回路所消耗的电能;(3)试分析讨论ab 棒在磁场中可能的运动情况。

解析:(1)ab 棒离开磁场右边界前做匀速运动,速度为v m ,则有:E Blv I E R rm ==+,对ab0(2)由能量守恒可得:(3)设棒刚进入磁场时速度为v由:棒在进入磁场前做匀加速直线运动,在磁场中运动可分三种情况讨论:,则棒做匀速直线运动;,则棒先加速后匀速;,则棒先减速后匀速。

相关主题