当前位置:文档之家› 基于单片机的倒车雷达设计

基于单片机的倒车雷达设计

图2-3超声波传感器指向特性及结构
(4)超声波传感器的应用
超声波传感技术应用在生产实践的不同方面,而医学应用是其最主要的应用之一,以医学为例子说明超声波传感技术的应用。超声波在上的应用主要是诊断,它已经成为了临床医学中不可缺少的诊断方法。超声波的是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的高等。因而推广容易,受到医务工作者和患者的欢迎。可以基于不同的医学原理,其中有代表性的一种所谓的A型方法。这个方法是利用超声波的。当超声波在中传播遇到两层声阻抗不同的介质界面是,在该界面就产生反射回声。每遇到一个反射面时,在示波器的屏幕上显示出来,而两个界面的阻抗差值也决定了回声的的高低。
声波在其传播介质中被定义为纵波。当声波受到尺寸大于其波长的目标物体阻挡时就会发生反射;反射波称为回声。假如声波在介质中传播的速度是已知的,而且声波从声源到达目标然后返回声源的时间可以测量得到,从声波到目标的距离就可以精确地计算出来。这就是本系统的测量原理。
超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差T,然后求出距离S=VT/2,式中的V为超声波波速。由于超声波也是一种声波,其声速C与温度有关,在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。图2-5即为超声波测距的具体流程图。
本文介绍了以STC89C51RC单片机为核心的一种低成本、高精度、微型化,并有数字显示和声光报警功能的倒车雷达系统。倒车雷达一般由超声波传感器(俗称探头)、控制器和显示器等部分组成,现在市场上的倒车雷达大多采用超声波测距原理,驾驶者在倒车时,启动倒车雷达,在控制器的控制下,由装置于车尾保险杠上的探头发送超声波,遇到障碍物,产生回波信号,传感器接收到回波信号后经控制器进行数据处理,判断出障碍物的位置,由显示器显示距离并发出警示信号,得到及时警示,从而使驾驶者倒车时做到心中有数,使倒车变得更轻松。倒车雷达的提示方式可分为液晶、语言和声音三种;接收方式有无线传输和有线传输等。本方案采用语音提示的方式,利用STC89C51RC单片机所具备的功能,外接超声波测距模组,即超声波发射模块和超声波接收模块,加上显示模块和语音报警模块,组成一个示例的倒车雷达系统,语音提示报警(~)范围内的障碍物,并通过数码管显示与障碍物之间的距离。
图2-5超声波测距流程图
倒车雷达只需要在汽车倒车时工作,为驾驶员提供汽车后方的信息。由于倒车时汽车的行驶速度较慢,和声速相比可以认为汽车是静止的,因此在系统中可以忽略多普勒效应的影响。在许多测距方法中,脉冲测距法只需要测量超声波在测量点与目标间的往返时间,实现简单,因此本系统采用了这种方法。
系统原理框图
在工业方面,超声波的典型应用是对金属的无损探伤和超声波测厚两种。过去,许多因为无法探测到物体组织内部而受到阻碍,超声波传感技术的出现改变了这种状况。当然更多的超声波传感器是固定地安装在不同的装置上,“悄无声息”地探测人们所需要的信号。在未来的应用中,超声波将与、新材料技术结合起来,将出现更多的、高灵敏度的超声波传感器。
(2)超声波发生器
为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。
基于单片机的倒车雷达设计
课程设计报告
(嵌入式系统设计实践)
学院:电气工程与自动化学院
题目:基于51单片机的车倒车雷达设计
专业班级:自动化131班
学号:
学生姓名:吴亚敏
指导老师:罗龙
时间:2015年12月1日
摘要
倒车雷达又称泊车辅助系统,是汽车泊车安全辅助装置,能以声音或者更为直观的显示告知驾驶员周围障碍物的情况,解除了驾驶员泊车和起动车辆时前后左右探视所引起的困扰,并帮助驾驶员扫除了视野死角和视线模糊的缺陷,提高了安全性。
②指向特性
实际的超声波传感器中的压电晶片是一个小圆片,可以把表面上每个点看成一个振荡器,辐射出一个半球波(子波),这些子波没有指向性。但离开超声传感器的空间某一点的声压是这些子波迭加的结果(衍射),却有指向性。超声传感器的指向图由一个主瓣和几个副瓣构成,其物理意义是0度时电压最大,角度逐渐增大时,声压减小。超声传感器的指向角一般为40度到80度,本设计要求传感器的指向角为75度。图2-3是电路中选用的发射传感器的指向特性及结构。
(3)超声波传感器的特性
超声波传感器的基本特性有频率特性和指向特性,这里以课题中选用的传感器T/R40发射型超声波传感器的特性为例加以说明。
①频率特性
图2-1超声波传感器的升压能级和灵敏度
图2-1是超声波发射传感器的升压能级和灵敏度。其中,40KHz处为超声波发射传感器的中心频率,在40KHz处,超声发射传感器所产生的超声机械波最强,也就是说在40KHz处所产生的超声声压能级最高。而在40KHz两侧,声压能级迅速衰减。其频率特性如图2-2所示。因此,超声波发射传感器一定要使用非常接近中心频率40KHz的交流电压来激励。
该设计的应用背景是基于STC89C51RC的超声信号检测的。因此初步计划实在室内小范围的测试,限定在米左右。单片机(STC89C51RC)发出短暂的40KHz信号,反射后的超声波经超声波接收器作为系统的输入,锁相环对此型号进行技术判断后,把相应的计算结果送到LED显示电路显示,并进行声光报警。
超声波倒车雷达的工作原理
如图2-6所示,驾驶员将手柄转到倒车档后,系统自动启动,超声波发送向后发射40kHz的超声波,经障碍物反射,由超声波接收模块收集,进行放大和比较,STC89C51RC将此信号送入显示模块,同时触发语音电路,发出同步语音提示,当与障碍物距离小于1m、大于时,发出不同的报警声,提醒驾驶员停车。系统的工作原理框图如图2-6所示:
第二章倒车雷达的基本工作原理
单片机的发展及其应用
单片机又称微控制器,是在一块硅片上集成了各种部件化微型计算机,这些部件包括中央处理器CPU、数据存贮器RAM、程序存贮器ROM、定时器/计数器和多种I/O接口电路。单片机体积小、重量轻、具有很强的灵活性而且价格不高,越来越得到广泛的应用。8051在小中型应用场合很常见,已成为单片机领域的实际标准。80年代中期,Intel公司将8051内核使用权以专利互换或出售形式转给世界许多着名IC制造厂商,如PHILIPS、西门子、AMD、OKI、NEC、Atmel等,这样8051就变成有众多制造厂商支持的、发展出上百个品种的大家族。90年代,PHILIPS推出支持16位计算的X4系列。XA系列是16位单片机,又可完全兼容8051的指令系统。Intel推出的80C51也是与8051在机器代码级兼容,这样保证了8051用户到21世纪技术的领先性。随着硬件的发展,8051软件工具已有C级编译器及实时多任务操作系统(RIOS),单片机的程序设计更简单、更可靠、实时性更强。因而8051系列是单片机教学的首选机型。而有内部可擦写RAM的89C51/52是目前我们常用的芯片。
超声波测距的设计实现
超声波测距是单片机控制超声波传感器发射出超声波束,遇到障碍后返回,然后接收它的回波,利用发、收过程中产生的时间差,就可以计算出前方物体离超声波传感器的实际距离。经分析可知:频率为40KHZ左右的超声波在空气中传播的效率最佳,因此,为了方便处理,发射的超声波被调制成40KHZ左右、具有一定间隔的调制脉冲波信号,如图2-4所示。
超声波由于其指向性强、能量消耗缓慢、传播距离较远等优点,而经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。超声波测距主要应用于倒车雷达、建筑施工工地以及一些工业现场,例如液位、井深、管道长度等场合。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在测控系统的研制上得到了广泛应用。
关键词:倒车雷达;超声波;单片机STC89C51RC
第一章概述
设计目的
伴随着我国汽车行业的高速发展,特别是近几年来,开始进入私家车时代,汽车的数量正在逐步增加,造成交通越来越拥挤。驾驶员开始越来越担心行车安全,其中倒车最为典型。同时汽车驾驶员中非职业汽车驾驶员的比例也在逐年增加。在公路、街道、停车场、车库等拥挤狭窄的地方倒车时,驾驶员既要前瞻,又要后顾,稍微不小心就会发生追尾事件。本系统是将微计算机技术与超声波的测距技术、传感器技术、单片机技术等相结合,可以检测到汽车倒车时障碍物与车尾的距离,通过液晶显示屏显示距离,并根据实际距离发出报警等级。驾驶员只要在驾驶室里就能做到心中有数,极大的提高了停车和倒车时的安全和效率。
超声波测距原理
超声波测距的基本原理
(1)认识超声波
超声波是指振动频率大于20KHz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限(20000Hz),人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性。
图2-2超声发射传感器频率特性
另外,超声波接收传感器的频率特性与发射传感器的频率特性类似。超声发射传感器频率特性如图2-2所示,曲线在40KHz处曲线最尖锐,输出电信号的振幅最大,即在40KHz处接收灵敏度最高。因此,超声波接收传感器具有很好的频率选择特性。超声接收传感器的频率特性曲线和输出端外接电阻R也有很大关系,如果R很大,频率特性是尖锐共振的,并且在这个共振频率上灵敏度很高。如果R较小,频率特性变得光滑而且有较宽的带宽,同时灵敏度以随之降低。并且最大灵敏的向稍低的频率移动。因此,超声接收传感器应与输入阻抗的前置放大器配合使用,才能有较高的接收灵敏度。考虑到实际工程测量的要求,可以选用超声波频率f=40KHz,波长λ=。
相关主题