基于FPGA的DDS信号发生器的研究之文献综述摘要:信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
函数信号发生器的实现方法通常是采用分立元件或单片专用集成芯片,但其频率不高,稳定性较差,且不易调试,开发和使用上都受到较大限制。
随着可编程逻辑器件(FPGA)的不断发展,直接频率合成(DDS)技术应用的愈加成熟,利用DDS原理在FPGA平台上开发高性能的多种波形信号发生器与基于DDS芯片的信号发生器相比,成本更低,操作更加灵活,而且还能根据要求在线更新配置,系统开发趋于软件化、自定义化。
关键词:FPGA 、DDS、信号发生器1.概述频率检测是电子测量领域的最基本也是最重要的测量之一,频率信号抗干扰强,易于传输,可以获得较高的测量精度,所以频率方法的研究越来越受到重视[1]。
在频率合成领域中,直接数字合成(Direct Digital Synthesizer,简称:DDS)是近年来新的技术, 它从相位的角度出发直接合成所需波形。
它是由美国人J.Tierncy首先提出来的,是一种以数字信号处理理论为基础,从相位概念出发直接合成所需波形的一种新的全数字技术的频率合成方法[2]。
其主要优点有:频率捷变速度快、频率分辨率高、输出相位连续、可编程、全数字化便于集成等,目前使用最广泛的一种DDS频率合成方式是利用高速存储器将正弦波的M个样品存在其中,然后以查找的方式按均匀的速率把这些样品输入到高速数模转换器,变成所设定频率的正弦波信号[3]。
一个典型的直接数字频率合成器应该包含一个正弦波样品的RAM。
在限定相位跳跃的频率设置字的控制方式下来搜寻这些样本。
一个典型的频率设置字是32位宽,但48位合成器在较高的频率分辨率也可使用。
一个相位累加器产生连续的正弦查找表的地址,并生成一个数字正弦波输出。
DDS的数字部分,即相位累加器和查表,被称为数控振荡器(NCO)[4]。
2.DDS的基本原理直接数字频率合成是基于奈奎斯特抽样定理和数字波形合成原理,而发展起来的一种数字化的频率合成技术。
根据该定理,对于1个周期的连续正弦波信号,可以沿着其相位轴方向,以等量的相位间隔对其进行相位与幅度采样,得到1个周期性的正弦信号的离散相位的幅度序列,并对模拟幅度进行量化,对量化后的幅度采用相应的二进制数据进行编码。
这样就可以把1个周期性的连续正弦信号转换成1系列离散的二进制序列,最后把它存储在只读存储器中,每个存储单元的地址就是相位取样地址,而存储单元的内容即是量化的正弦波的幅度值。
这样的1个只读存储器构成1个与2π周期内相位取样相对应的正弦函数查找表。
由于其存储的是1个周期的正弦波波形的幅度值,所以又称其为正弦波波形存储器[5]。
一个完整DDS的基本结构包括:相位累加器、正弦查询表、数模转换器(DAC)及低通滤波器等[6]。
除了滤波器(LPF)之外,DDS系统都是通过数字集成电路实现的,易于集成和小型化。
系统的参考时钟源通常是一个具有高稳定性的晶体振荡器,为各组成部分提供同步时钟。
频率控制字(FSW)实际上是相位增量值(二进制编码)作为相位累加器的累加值。
相位累加器在每一个参考时钟脉冲输入时,累加一次频率字,其输出相应增加一个步长的相位增量。
由于相位累加器的输出连接在波形存储器(ROM)的地址线上,因此其输出的改变就相当于查表。
这样就可以通过查表把存储在波形存储器内的波形抽样值(二进制编码)查找出来。
ROM的输出送到D/A转换器,经D/A转换器转换成模拟量输出[7]。
3.FPGA的DDS信号发生器的研究历史信号发生器是能够产生大量的标准信号和用户定义信号,并保证高精度、高稳定性、可重复性和易操作性的电子仪器[8]。
在70年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方法。
这个时期的波形发生器多采用模拟电子技术,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形,则电路结构非常复杂。
同时,主要表现为两个突出问题,一是通过电位器的凋节来实现输出频率的调节,因此很难将频率调到某一固定值;二是脉冲的占空比不可调节[9]。
在70年代后,微处理器的出现,可以利用处理器、A/D和D/A,硬件和软件使波形发生器的功能扩大,产生更加复杂的波形。
这时期的波形发生器多以软件为主,实质是采用微处理器对DAC的程序控制,就可以得到各种简单的波形。
90年代末,出现几种真正高性能、高价格的函数发生器。
但是HP公司推出了型号为HP770S的信号模拟装置系统,它由HP8770A任意波形数字化和HPl776A波形发生软件组成。
HP8770A实际上也只能产生8种波形,而且价格昂贵。
不久以后,Analogic公司推出了型号为Data-2020的多波形合成器,Lecroy 公司生产的型号为9100的任意波形发生器等。
到了二十一世纪,随着集成电路技术的高速发展,出现了多种工作频率可过GHZ的DDS芯片,同时也推动了函数波形发生器的发展,2003年,Agilent 的产品33220A能够产生17种波形,最高频率可达到20M,2005年的产品N6030A 能够产生高达500MHZ的频率,采样的频率可达1.25GHZ。
4.国内外波形发生器发展现状直接数字频率合成是一种新的频率合成技术,同传统的直接频率合成(DDS)、锁相环间接频率合成(PLL)方法相比。
它具有很多优点:频率切换时间短、频率分辨率高、相应变化连续、容易实现对输出信号的多种调制等[10]。
最近几年来,随着集成电路技术和器件水平的提高,国外一些公司先后推出各种各样的DDS专用芯片,如Qualcomm公司的Q2230、Q2334,AD公司的AD9955、AD9850、AD9851、AD9852等[11]。
函数波形发生器发展很快近几年来,国际上波形发生器技术发展主要体现在以下几个方面:1. 过去由于频率很低应用的范围比较狭小,输出波形频率的提高,使得波形发生器能应用于越来越广的领域。
波形发生器软件的开发正使波形数据的输入变得更加方便和容易。
波形发生器通常允许用一系列的点、直线和固定的函数段把波形数据存入存储器。
同时可以利用一种强有力的数学方程输入方式,复杂的波形可以由几个比较简单的公式复合成V:f(t)形式的波形方程的数学表达式产生。
从而促进了函数波形发生器向任意波形发生器的发展,各种计算机语言的飞速发展也对任意波形发生器软件技术起到了推动作用。
目前可以利用可视化编程语言(如Visual Basic,Visual C等等)编写任意波形发生器的软面板,这样允许从计算机显示屏上输入任意波形,来实现波形的输入。
2. 与VXI资源结合。
目前,波形发生器由独立的台式仪器和适用于个人计算机的插卡以及新近开发的VXI模块。
由于VXI总线的逐渐成熟和对测量仪器的高要求,在很多领域需要使用VXI系统测量产生复杂的波形,VXI的系统资源提供了明显的优越性,但由于开发VXI模块的周期长,而且需要专门的VXI 机箱的配套使用,使得波形发生器VXI模块仅限于航空、军事及国防等大型领域。
在民用方面,VXI模块远远不如台式仪器更为方便瞄圳。
3. 随着信息技术蓬勃发展,台式仪器在走了一段下坡路之后,又重新繁荣起来。
不过现在新的台式仪器的形态,和几年前的己有很大的不同。
这些新一代台式仪器具有多种特性,可以执行多种功能。
而且外形尺寸与价格,都比过去的类似产品减少了一半。
5.研究波形发生器的目的及意义波形发生器是信号源的一种,主要给被测电路提供所需要的己知信号(各种波形),然后用其它仪表测量感兴趣的参数[12]。
多功能波形发生器采用FPGA器件作为核心控制部件,精度高稳定性好,得到波形平滑,特别是犹豫FPGA的高速度,能实现较高频率的波形[13]。
目前我国己经开始研制波形发生器,并取得了可喜的成果。
但总的来说,我国波形发生器还没有形成真正的产业。
就目前国内的成熟产品来看,多为一些PC仪器插卡,独立的仪器和VXI系统的模块很少,并且我国目前在波形发生器的种类和性能都与国外同类产品存在较大的差距,因此加紧对这类产品的研制显得迫在眉睫。
6.函数信号发生器的发展趋势频率合成器被誉为电子系统的“心脏”,频率源的发展直接关系到电子系统性能的发展。
信号发生器是一种常用的信号源,广泛应用于通信,雷达,测控,电子对抗以及现代化仪器仪表等领域,是一种为电子测量工作提供符合严格技术要求的电信号设备,和示波器、电压表、频率计等仪器一样是最普通、最基本也是应用最广泛的电子仪器之一,几乎所有电参量的测量都要用到波形发生器[14]。
随着现代电子技术的飞速发展,现代电子测量工作对波形发生器的性能提出了更高的要求,不仅要求能产生正弦波、方波等标准波形,还能根据需要产生任意波形,且操作方便,输出波形质量好,输出频率范围宽,输出频率稳定度、准确度及分辨率高,频率转换速度快且频率转换时输出波形相位连续等。
可见,为适应现代电子技术的不断发展和市场需求,研究制作高性能的任意波形发生器(Arbitrary Waveform Generator,简称AWG)十分有必要,而且意义重大。
一般传统的信号发生器都采用谐振法,即用具有频率选择性的回路来产生正弦振荡,获得所需频率。
这种信号发生器虽然具有输出信号频率范围宽,结构简单等优点,但输出波形单一,不能产生任意波形,且频稳定度和准确度较差,频率准确度一般在0.5%以下,对于作为精密测量用的信号发生器,其频率稳定度是不够的。
因此传统的信号发生器已经越来越不能满足现代电子测量的需要,正逐步退出历史舞台。
而基于频率合成技术制成的信号发生器,由于可以获得很高的频率稳定度和精确度,因此发展非常迅速,尤其是最近随着现代电子技术的不断发展,其应用更是有了质的飞跃。
同时随着VLSI技术的进步,将FPGA应用到DDS技术中对其进行控制和实现的做法也得到了广泛的推崇[15]。
参考文献[1] 徐金龙,刘宇红,刘桥. 基于DDS原理的任意波形信号发生器的设计[J].现代机械,2006(4):74—76.[2] 唐亚平.基于FPGA与DSP的等精度数字频率计设计[J].微计算机信息,2007,1-2:249-250.[3] 赵洪华.基于DDS技术的数字频率信号发生器的设计[J].客机创新导报,2010(24):96-97.[4] 彭文标, 黄悦华. 基于DDS技术的信号源设计与实现[J]. 微计算机信息,2007(20):271-272.method of precise frequency by the aid of a DDS.[6] 殷雷, 金海军, 李映雪, 余水宝. 基于DDS的高精度函数信号发生器的研制[J].现代电子技术,2009(1):68-73.[7] 高士友, 胡学深, 杜兴莉, 刘桥. 基于FPGA的DDS信号发生器的设计[J].现代电子技术,2009(16):35-40.[8] 赵晶亮,曲双如,陈娟,吕晶晶.运动目标射频特征信号模拟器设计[J].伺服控制,2011(03):62-63.[9] 翁木云,FPGA设计与应用[M].西安:西安电子科技大学出版社,2003.[10]张厥盛,曹丽娜.锁相与频率合成技术[M].西安:电子科技大学出版社,1995.[11] Nicholas H T,III H. Samulei, Kim B. The opt Imization of Direct DigitaFrequency Synthesizer Performance in the Presence of Finite WordLengtheffects, IEEE Proc 42th AFCS, 1988 357~363.[12]胡晓燕. 基于FPGA和MCU的函数波形发生器设计[J].电子测试,2008(12):49-53.[13]黄小翰. 基于FPGA的多功能波形发生器的设计[J].价值工程,2010(9):232-233.[14]孙超, 林占江. 基于DDS的雷达任意波形信号源的研究[J].电子测量与仪器学报,2008,22(2):31-36.[15]陈楠. FPGA在DDS技术中的应用[J].广西轻工业,2011(7):61-62.。