数据结构实验五矩阵的压缩存储与运算第五章矩阵的压缩存储与运算【实验目的】1. 熟练掌握稀疏矩阵的两种存储结构(三元组表和十字链表)的实现;2. 掌握稀疏矩阵的加法、转置、乘法等基本运算;3. 加深对线性表的顺序存储和链式结构的理解。
第一节知识准备矩阵是由两个关系(行关系和列关系)组成的二维数组,因此对每一个关系上都可以用线性表进行处理;考虑到两个关系的先后,在存储上就有按行优先和按列优先两种存储方式,所谓按行优先,是指将矩阵的每一行看成一个元素进行存储;所谓按列优先,是指将矩阵的每一列看成一个元素进行存储;这是矩阵在计算机中用一个连续存储区域存放的一般情形,对特殊矩阵还有特殊的存储方式。
一、特殊矩阵的压缩存储1. 对称矩阵和上、下三角阵若n阶矩阵A中的元素满足= (0≤i,j≤n-1 )则称为n阶对称矩阵。
对n阶对称矩阵,我们只需要存储下三角元素就可以了。
事实上对上三角矩阵(下三角部分为零)和下三角矩阵(上三角部分为零),都可以用一维数组ma[0.. ]来存储A的下三角元素(对上三角矩阵做转置存储),称ma为矩阵A的压缩存储结构,现在我们来分析以下,A和ma之间的元素对应放置关系。
问题已经转化为:已知二维矩阵A[i,j],如图5-1,我们将A用一个一维数组ma[k]来存储,它们之间存在着如图5-2所示的一一对应关系。
任意一组下标(i,j)都可在ma中的位置k中找到元素m[k]= ;这里:k=i(i+1)/2+j (i≥j)图5-1 下三角矩阵a00 a10 a11 a20 … an-1,0 … an-1,n-1k= 0 1 2 3 …n(n-1)/2 …n(n+1)/2-1图5-2下三角矩阵的压缩存储反之,对所有的k=0,1,2,…,n(n+1)/2-1,都能确定ma[k]中的元素在矩阵A中的位置(i,j)。
这里,i=d-1,(d是使sum= > k的最小整数),j= 。
2. 三对角矩阵在三对角矩阵中,所有的非零元素集中在以主对角线为中心的带内状区域中,除了主对角线上和直接在对角线上、下方对角线上的元素之外,所有其它的元素皆为零,见图5-3。
图5-3 三对角矩阵A与下三角矩阵的存储一样,我们也可以用一个一维数组ma[0..3n-2]来存放三对角矩阵A,其对应关系见图5-4。
a00 a01 a10 a11 a12 … an-1,n-2 an-1,n-1k= 0 1 2 3 4 …3n-3 3n-2图5-4下三角矩阵的压缩存储A中的一对下标(i,j)与ma中的下标k之间有如下的关系:公式中采用了C语言的符号,int()表示取整,‘%’表示求余。
二、稀疏矩阵在m×n的矩阵中,有t个非零元。
令δ=,称δ矩阵的稀疏因子,常认为δ≤0.05时称为稀疏矩阵。
稀疏矩阵在工程中有着大量的应用,不少工程问题都可以转化为对稀疏矩阵的计算问题。
如何进行稀疏矩阵的压缩存储呢?为节省存储空间,应只存储非零元素。
除了存储非零元的值之外,还必须记下所在行和列的位置(i,j),即一个三元组(i,j, )唯一确定了矩阵A的一个非零元素。
1. 三元组顺序表以顺序存储结构来表示三元组表,则可称稀疏矩阵的一种压缩存储方式。
//稀疏矩阵的三元组顺序表存储表示。
#define MaxSize 10 //用户自定义typedef int Datatype; //用户自定义typedef struct{ //定义三元组int i; //非零元的行下标int j; //非零元的列下标Datatype v; //非零元的数据值}TriTupleNode;typedef struct{TriTupleNode data[MaxSize]; //非零元的三元组表int m,n,t; //矩阵行,列及三元组表长度}TriTupleTable;2. 十字链表当矩阵的非零元个数和位置在操作过程中变化较大时,就不宜采用顺序存储结构来表示三元组的线性表,采用纵横交叉的十字链表就比较好。
在十字链表中,每个非零元可用一个含五个域的结点表示,其中i, j和e三个域分别表示该非零元所在的行、列和非零元的值,向右域right用以链接同一行中下一个非零元。
向下域down用以链接同一列中下一个非零元。
同一行中的非零元通过right域链接成一个线性链表,每个非零元既是某个行链表中的一个结点,又是某个列链表中的一个结点,整个矩阵构成了一个十字交叉的链表,故称这样的存储结构为十字链表,如图5-5所示。
图5-5 稀疏矩阵M的十字链表typedef int Datatype; //用户自定义typedef struct OLNode{int i,j; //该非零元的行和列下标Datatype v;Struct OLNode *right,*down //该非零元所在行表和列表的后继链域}OLNode;*OLink;typedef struct {OLink *rhead,*cheadint mu,nu,tu;}CrossList;第二节用三元组表实现稀疏矩阵的基本操作【问题描述】用三元组表实现稀疏矩阵的按列转置。
【数据描述】typedef int Datatype; //用户自定义typedef struct{ //定义三元组int i,j; // 非零元素的行下标和列下标Datatype v;}TriTupleNode;typedef struct{ //定义三元组表TriTupleNode data[MaxSize];int m,n,t; //矩阵行,列及三元组表长度}TriTupleTable;【算法描述】按照列序来进行转置。
为了找到每一列中所有的非零元素,需要对其三元组表从第一行起整个扫描一遍。
Status TransposeSMatrix(TriTupleTable a, TriTupleTable &b){b.m=a.n;b.n=a.m;b.t=a.t;if(b.t){q=0;for(col=1;col<=a.n;++col)for(p=0;p<=a..t;++p)if(a.data[p].j==col){b.data[q].i=a.data[p].j;b.data[q].j=a.data[p].i;b.data[q].v=a.data[p].v;++q;}}return OK;}【C源程序】#include <stdio.h>#include <string.h>#define Ok 1#define Maxsize 10 //用户自定义三元组最大长度typedef struct{ /*定义三元组表*/int i,j;int v;}TriTupleNode;typedef struct{ /*定义三元组表*/ TriTupleNode data[Maxsize];int m;int n;int t; /*矩阵行,列及三元组表长度*/}TriTupleTable;void InitTriTupleNode (TriTupleTable *a){ /*输入三元组表*/ int i,j,k,val,maxrow,maxcol;char contiue;maxrow=0;maxcol=0;i=j=0;k=0;while(i!=-1&&j!=-1){ /*rol=-1&&col=-1结束输入*/printf("input row \n");scanf("%d",&i);printf("input col \n");scanf("%d",&j);printf("input value\n");scanf("%d",&val);a->data[k].i=i;a->data[k].j=j;a->data[k].v=val;if (maxrow<i) maxrow=i;if (maxcol<j) maxcol=j;k++;}a->m=maxrow;a->n=maxcol;a->t=k-1;}void showMatrix(TriTupleTable *a){ /*输出稀疏矩阵*/ int p,q;int t=0;for(p=1;p<=a->m;p++){for(q=1;q<=a->n;q++){ if (a->data[t].i==p&&a->data[t].j==q){printf("%d ",a->data[t].v);t++;}else printf("0 ");}printf("\n" );}}TransposeSMatrix(TriTupleTable *a,TriTupleTable *b) {int q,col,p;b->m=a->n;b->n=a->m;b->t=a->t;if(b->t){q=0;for(col=1;col<=a->n;++col)for(p=0;p<a->t;++p)if(a->data[p].j==col){ b->data[q].i=a->data[p].j;b->data[q].j=a->data[p].i;b->data[q].v=a->data[p].v;++q;}}}void main( void){TriTupleTable *a,*b;InitTriTupleNode(a);showMatrix(a); /*转置前*/TransposeSMatrix(a,b);showMatrix(b); /*转置后*/}【测试数据】输入:输出:1 2 0 0 1 4 04 3 0 7 2 3 00 0 0 8 0 0 00 7 8【说明】分析算法,主要的工作是在p和col的两重循环中完成,算法的时间复杂度为O(n*t)。
如果非零元素个数t和m*n同数量级时,算法的时间复杂度变为O(m*n2)。
【实验题】1. 稀疏矩阵按行序进行转置。
2. 两个稀疏矩阵的相加运算。
第三节十字链表表示稀疏矩阵的基本操作【问题描述】两个相同行数和列数的稀疏矩阵用十字链表实现加法运算【数据描述】typedef struct ele {/* 十字链表结点类型*/int row, col;double val;struct ele *right, *down;}eleNode;【算法描述】(1) 若q->j>v->j,则需要在C矩阵的链表中插入一个值为bij的结点,,修改v=v->right。