二氧化硅处理方法的研究第一章前言1、选题的目的、意义由于二氧化硅内部的聚硅氧和外表面存在的活硅醇基及其吸附水,使其呈亲水性,在有机相中难湿润和分散,与有机基体之间结合力差,易造成界缺陷,使复合材料性能降低[1-3],而二氧化硅可用于橡胶制品、塑料制品、粘合剂、涂料等领域,要想改善这种缺陷,我们需要通过对二氧化硅进一步处理,使原来亲水疏油的表面变成亲油疏水的表面,这种表面功能的改变在实际应用中有重要价值。
据此我们利用一些表面改性方法如沉淀法二氧化硅表面改性、十二醇二氧化硅表面改性、气相法二氧化硅表面改性、两亲性聚合物改性二氧化硅等来使亲水性的二氧化硅通过表面处理改性为疏水的二氧化硅,以提高产品的亲油性、分散性和相容性,并能使二氧化硅在某些乳液中既能长期稳定分散,又能保证它与基料在成膜后能有良好的界面结合。
第二章、二氧化硅处理方法的研究现状目前我们对二氧化硅处理方法的研究主要分为:纳米级二氧化硅的改性处理和非纳米级的二氧化硅的改性处理。
2.1非纳米级二氧化硅的研究2.1.1二氧化硅的概念:SiO2又称硅石。
在自然界分布很广,如石英、石英砂等。
白色或无色,含铁量较高的淡黄色。
密度2.2 ~2.66。
熔点1670℃(麟石英);1710℃(方石英)。
沸点2230℃,相对介电常数为3.9。
不溶于水微溶于酸,呈颗粒状态时能和熔融碱类起作用。
用于制玻璃、水玻璃、陶器、搪瓷、耐火材料、硅铁、型砂、单质硅等。
2.1.2非纳米级二氧化硅表面改性由于在二氧化硅表面存在有羟基,相邻羟基彼此以氢键结合,孤立羟基的氢原子正电性强,易与负电性原子吸附,与含羟基化合物发生脱水缩合反应,与亚硫酰氯或碳酰氯反应,与环氧化台物发生酯化反应。
表面羟基的存在使表面具有化学吸附活性,遇水分子时形成氢键吸附。
二氧化硅表面是亲水性的,无论气相法或沉淀法都是如此,差异仅是程度不同这导致了在与橡胶配合时相容性差,在配合胶料内对硫化促进剂吸附而迟延硫化。
此外,白炭黑比表面积大、粒径小,在与橡胶配台时难混入、难分散。
在空气中易飞扬,储存与运输皆不便。
改性的目的就是改变二氧化硅表面的物化性质,提高粒子与橡胶分子问的相容性,增强填料与聚合物之闻交互作用,改善加工工艺性能提高填料的补强性能。
对二氧化硅改性的原理是基于其表面羟基易与含羟基化合物反应,易吸附阴离子的特点,因此,常使用脂肪醇、胺、脂肪酸、硅氧烷等对其改性。
表面改性分为热处理和化学改性处理。
1)热处理热处理后二氧化硅表面吸湿量低,且填充制品吸湿量也显著下降,其原因可能是由于高温加热条件下氢键缔合的相邻羟基发生脱水而形成稳定键台,从而导致吸水量下降低,此种方法简便经济。
但是,仅仅通过热处理,不能很好改善填充时界面的粘台效果,所以在实际应用中,常对细粒子二氧化硅使用含锌化合物处理,并在200~ 400℃条件下进行热处理,或使用硅烷和过渡金属离子对细粒子二氧化硅处理,然后经热处理,或用聚二甲基二硅氧烷改性二氧化硅时,然后进行热处理。
2)化学改性处理使用醇、胺、脂肪酸或聚合物改性二氧化硅表面。
由于上述改性剂的改性效果不同,即使用同一种改性剂,其改性效果也可能因硫化体系不同或由于二氧化硅,结果表面能下降,在与乙丙橡胶配合后极性成分减少,填料与聚合物相界面张力下降,相容性增加,但是与期望相反,填充胶硫化后,物理性能和动态性能未获得改善,这是由于填料表面结构醇基团的负电性阻碍了填料在橡胶内形成网络结构能力。
白炭黑粒子表面硅醇基团用甲醇和十六烷醇酯化以改善其表面性能。
经过气固色谱法零表面覆盖度测试表明,初始白炭黑的表面性能依其制备方法不同而不同,接枝共聚台显著降低了分散性及特定组分的固体表面自由能,改变了表面的自由焓变、熵变。
这种改变大小既依赖二氧化硅的制备工艺(气相法改变显著),也依赖匏枝链的长度(十六烷醇产生的改变大)。
使用胺类(乙胺、1,2一乙二胺、二亚乙基三胺、三亚乙基四胺、四亚乙基五胺)改性二氧化硅,这种二氧化硅用于乙丙橡胶中,发现在二氧化硅红外光谱中羟基最大只附量向低渡方向移动,降低了分散组分的表面张力,导致电动势由负变为正。
用矿物油来模拟橡胶,将改性的二氧化硅分散其中降低了对硫化促进剂(二苯胍,2,2一二硫二苯并噻唑)的只附和改善了填充硫化胶的物理性能。
当使用硼胺改性二氧化硅时,由于处理条件不同而改性效果不同。
最佳效果是在500℃条件下处理二氧化硅3h,这样能使大部分硼胺基团固定在二氧化硅表面。
改性二氧化硅填充橡胶时可使用两种硫化体系(有效硫化和传统硫化),结果显示,使用有效硫化体系硫化胶性能接近硅烷改性二氧化硅填充胶,在某些性能方面好于传统硫化体系硼胺改性二氧化硅使沉淀法白炭黑作为一种补强填料,其综合性能获得改善。
有机聚合物改性的沉淀法白炭黑是在二氧化硅表面进行单体的聚合。
①首先表面活性剂只附在二氧化硅表面;②加入溶剂化的有机单体;③单体在表面活性剂两面发生聚合;④移去部分表面活性剂。
改性用有机单体可选为异戊二烯、丁二烯、苯乙烯,改性聚合反应可为均聚或共聚。
在实际应用于轮胎配合胶料中的测试结果显示,丁二一苯乙烯共聚改性可获得最为满意的改性效果。
物理性能测试显示,扯断强度,撕裂性能、扯断伸长率、耐裂口增长性能得到提高,硫化时间缩短。
有机单体原位聚合改性的沉淀法二氧化硅顾胶硫化特性和硫化胶的物理性能。
在无机气相等离子体中处理二氧化硅,条件为Ar气压力106.66Pa处是时间5min。
处理后二氧化硅填充橡胶,大大改善了加工性能,硫化胶的抗张强度显著提高。
接下来对以上提到的一些方法做简要的说明:⑴十二醇二氧化硅表面改性用醇类酯化二氧化硅进行表面改性,是得到功能化表面的较好的选择。
醇和二氧化硅底物首先进行物理吸附形成氢键络合物预反应吸附体系,然后进行反应。
⑵气相法二氧化硅表面改性气相法二氧化硅(俗称气相法白炭黑) 是由氯硅烷经氢氧焰高温水解制得的一种精细、特殊的无定形粉体, 其产品纯度高、平均原生粒径为7~40 nm、比表面积50~380 m2 /g、SiO2质量分数不小于99.8% , 是一种多功能的添加剂,广泛应用于硅橡胶、涂料、复合材料中, 起到补强、增稠、触变等作用[4] 。
但应用中存在一个关键问题, 就是如何与聚合物更好的相容, 使其能均匀分散在聚合物中。
通过一定的工艺使某些改性剂与气相法二氧化硅表面的硅羟基发生反应,消除或减少硅羟基的数量, 使气相法二氧化硅由亲水性变为疏水性, 就能改善二氧化硅与聚合物的相容性。
目前常用的改性剂有醇、脂肪酸、硅烷偶联剂等等。
国外已开发出多种改性产品, 如: Degussa 公司的R974、WACKER 公司的H - 2000等等; 国内也有多家单位进行了相关的研究, 如吉林化工研究院、中科院化学研究所等等, 但都未形成规模生产。
本实验以六甲基二硅氮烷为改性剂, 采用干法工艺对气相法二氧化硅进行表面改性, 研究了改性工艺对气相法二氧化硅表面硅羟基数量的影响。
⑶两亲性聚合物改性二氧化硅随着人们环保意识的不断增长,绿色消费已是当今世界上流社会的时尚。
化工生产中,易挥发的毒性有机溶剂渐渐被水所取代,各种无机颗粒填充聚合物乳液体系已得到较为广泛的应用,由于涂料产品总量之大,水性涂料首先成为环境标志的典型代表[1]。
此外,水性胶粘剂、水性油墨以及其它复合材料体系也不断得到研究与开发。
在包括填料、聚合物基料和溶剂这样的分散体系中,溶剂和基料竞争填料表面上的吸附位置。
为了最佳的或可接受的填料分散,基料如果不是优先吸附,至少应当相等地被吸附[2] 。
油性体系中,无机填料表面的亲油改性,可保证填料在体系的分散稳定性,树脂与亲油表面的亲和吸附,使填料与基料间界面结合不成为难题;水溶性高分子体系与油性体系类似,无机填料的极性表面基本上不影响分散稳定性及界面问题。
而乳胶体系填料在溶剂‘水j中的分散以及它与乳胶颗粒在成膜时的界面粘结成为一对矛盾。
为解决这一矛盾,使用带两亲性端基的分散剂是常用的手段,一种优良的代表性氨基醇是2一氨基一2一甲基一1一丙醇,商品名为AMP一95[3] 。
这种分散由于易受PH值、温度等条件的影响,贮存稳定性不好。
为此,Th.Batzilla and A.Tulken [5]在细Al片表面形成交联共聚物,不容易受各种条件影响,但在体系中这种物理吸附还是存在解吸附现象,影响分散及涂膜的性能。
⑷沉淀法二氧化硅表面改性要使无机粉体在有机体系中充分发挥作用,必须让无机粉体在有机介质中充分分散。
为了达到这个目的,往往需要对无机粉体进行表面改性。
粉体表面经过改性后,其表面的亲水性可以转变为疏水性,此时,它的吸附、润湿、分散等一系列性质都会发生显著改变。
在复合材料中,无机物和有机物的结合界面的微观结构获得改善,从而使其结合力、结合强度及复合材料的力学性质和物理性能都得到显著的增强。
以硅酸钠和盐酸为原料制备二氧化硅粉体,用表面活性剂对产品进行表面改性处理。
首先对改性剂进行筛选,然后借助数学软件SPSS13.0,用极差分析、方差分析和多元回归分析3种方法,分别对正交实验数据进行处理,讨论了改性温度、改性时间、改性剂用量(改性剂占二氧化硅粉体的质量分数)、异丙醇用量4个因素对产品活化指数的影响,并得出了完全一致的结果,即优化工艺方案为:改性温度85℃,改性时间120min,改性剂A一151用量20%,异丙醇用量15mL;在此条件下改性后产品的活化指数为35%,表现出良好的疏水性。
⑸表面改性球形二氧化硅的制备球形二氧化硅在涂料、催化、色谱填料、感光乳剂、高性能陶瓷及集成电路塑封填料等方面都有广泛应用。
表面改性的疏水二氧化硅因具有较强的非极性相互作用,在反相固体萃取填料及高聚物体系性能补强等方面得到重要应用。
球形二氧化硅的液相反应法制备主要包括溶胶—凝胶法[1~3,6]和微乳液法[7~8]。
溶胶—凝胶法通常以有机硅醇盐如正硅酸乙酯(TEOS)为原料,用碱或酸作催化剂,在醇或醇水介质中通过水解反应制备。
微乳液法则是以TEOS或Na2SO3为原料在反向微乳液(W/O)提供的微反应器中通过水解聚合反应合成。
溶胶—凝胶法中,反应溶剂的种类、催化剂的种类和浓度、相关反应物浓度及比例等因素都会影响水解和成胶反应过程,从而影响最终所得二氧化硅颗粒的形貌、粒度分布和颗粒间的聚集状态。
研究这些影响因素对颗粒的调控作用对拓宽颗粒粒径的选择范围具有重要的意义。
本研究以TEOS为硅源,在醇水混合溶剂中以氨作催化剂,通过溶胶—凝胶法制备二氧化硅球形颗粒,并以十八烷醇作为改性剂,通过酯化反应对二氧化硅进行表面修饰改性。
研究了成胶反应中TEOS浓度对二氧化硅颗粒粒径的影响,并用TEM、XPS、IR、TG-DTG等实验手段对所得产品进行了表征。
2.2纳米级二氧化硅改性处理研究现状:2.2.1纳米二氧化硅的概念:纳米二氧化硅是极其重要的高科技超微细无机新材料之一,因其粒径很小,比表面积大,表面吸附力强表面能打,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,一起优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。