当前位置:文档之家› 有机废气处理技术

有机废气处理技术

当气体中含有较多的有回收价值的有机气态污染时,通过冷凝回收这些污染物是最好的方法。

当尾气被水饱和时,为了消灭反烟,有时也用冷凝的方法将水蒸气冷凝下来,单纯通过冷凝往往不能将污染物脱除至规定的要求,除非使用冷冻剂。

一般使用室温水作为冷却剂的冷凝器是吸附或燃烧的很好的预处理装置。

一、冷凝原理1.冷凝自然界的冷凝现象诸如:盛夏季节,清晨所见到的花草上的露珠;厨房自来水管外面一层湿漉漉的水膜;外出归来人室后眼镜上的水雾等。

所谓冷凝就是当热流体放出热量时,温度没有变化,而使流体从气相变为液相。

冷凝回收的方法就是将蒸气从空气中冷却凝成液体,并将液体收集起来,加以利用。

从空气中冷凝蒸气的方法,可以是移去热量即冷却,也可以是增加压力,使蒸气在压缩时凝出来。

而在空气净化方面通常只用冷却的方法,很少使用压缩的方法。

2.饱和蒸气压与温度的关系所谓蒸气压就是物质从液相逃逸到气相中的能力。

蒸气压与蒸气物质本身的性质、温度及蒸气的浓度有关。

以冷却的方法将空气中的蒸气凝成液体,其极限就是指冷却温度下的饱和蒸气,而饱和蒸气压就是指纯物质在指定温度下逃逸到气相中的最大能力。

如图13—1所示,是某些物质的饱和蒸气压与温度的关系曲线。

图13-1 某些物质的饱和蒸气压与温度的关系曲线不同温度下的饱和蒸气压p0可按下式计算:(13—1)式中p0——指定开尔文温度T下的饱和蒸气压,×133.322Pa;T——有机溶剂的温度,K;A,B——与物质性质有关的常数。

表13—1是一些常见有机溶剂的A,B值。

[例1] 求苯、甲苯和二硫化碳在室温为20℃时的饱和蒸气压。

解由式(13—1)可算出苯:由表13—1,A=1731,B=7.783所以p0=75×133.322Pa(75mmHg)查图13—1可知,两种方法得出的数值相近。

甲苯:由表13—1,A=1901,B=7.837所以p0=22×133.322Pa(22mmHg)查图13—1与甲苯曲线对照,数值相近。

二硫化碳:查表13—1,A=1446,B=7.410所以p0=298×133.322Pa(298mmHg)查图13—1与二硫化碳曲线对照数值相近。

由于蒸气的温度愈高,则其对应的饱和蒸气压愈高,通过降低温度把热量移去,可使气相回到液相。

可见冷凝作用的极限是饱和蒸气压下的温度。

二、冷凝回收的极限与适用范围1.蒸气压与蒸气浓度的关系对应于空气中某种有机蒸气的分压(蒸气压)为饱和蒸气压下的温度,即为该空气混合气体的露点温度。

例如,空气中的CS2蒸气压为600×133.322Pa(600mmHg)时,查图中CS2曲线可知,其露点为40℃,同样,在上述例题中也可以反算。

空气中苯蒸气压为75×133.322Pa(75mmHg)时的露点温度是20℃,空气中甲苯蒸气分压为22×133.322Pa(22mmHg)时的露点温度也是20℃,对于这样的空气蒸气混合气体,只有将其冷却到露点温度下,才能将蒸气部分冷凝下来。

空气中能凝结下来的,也就是能被净化下来的有害蒸气量,受到冷却温度的限制,即对应于冷却温度下的饱和蒸气压的有害溶剂仍留在空气气相中。

这也就是前面所述的:冷凝净化温度是以冷却温度的饱和蒸气压为极限。

如果已知混合气体在温度t(℃)时所含有害蒸气分压p×133.322Pa(pmmHg),则空气中的蒸气浓度可按下式计算:亦即(13—2)式中C——空气中有害蒸气的浓度,g/m3;p——空气中有害蒸气的分压,×133.322Pa;t——混合气体的温度,℃;υ——混合气体的流量,m3/h;M——有害蒸气的相对分子质量。

[例2] 按前例计算苯、甲苯和二硫化碳在20℃时的饱和蒸气浓度。

解20℃时苯的饱和蒸气压=75×133.322Pa(75mmHg),苯的相对分子质量M=78,代人公式(7—2)得同理:20℃时甲苯的饱和蒸气压=22×133.322Pa(22mmHg),甲苯的相对分子质量M=92,得:同理:20℃时二硫化碳的=290×133.322Pa(290mmHg),相对分子质量为76,得:从上例中可以看出,将空气与蒸气的混合气体冷却到20℃,在空气中有320g/m3的苯、110g/m3的甲苯或者1203g/m3的二硫化碳凝结不出来,也就是不能被除掉。

这些数值说明以冷凝回收法将尾气冷却到20℃,不仅距离卫生标准的要求相差太远,而且也达不到废气的排放标准。

按照我国大气污染物排放标准。

即使以120m高的烟囱排放,规定的二硫化碳允许排放量为110kg/h,允许排放的流量只能是110×1000/1203=9.14m3/h,即使冷却到0℃、-15℃,它的饱和蒸气压分别为135×133.322Pa(135mmHg)、65×133.322Pa(65mmHg),废气中仍含有560g/m3、270g/m3的二硫化碳,其允许排放的流量也只有196m3/h、405m3/h,这说明冷凝回收法一般只做为含较高浓度尾气时的前处理,而不用作最后净化。

上述也可以说明,冷凝回收的关键是冷却温度。

冷却温度越低,净化程度愈高。

2.冷凝回收的适用范围及特点冷凝回收只适用于蒸气状态的有害物质,多用于回收空气中的有机溶剂蒸气。

冷凝方法本身可以达到很高的净化程度,但是净化要求愈高,则需冷却的温度愈低,所用的费用也就愈大。

因此,只有空气中所含蒸气浓度比较高时,冷凝回收才能比较有效。

而对于一般冷却水能达到的低温度来说,冷凝的净化程度也是有一定限度的。

冷凝回收法的优点是所需设备和操作条件比较简单,回收得到的物质比较纯净,其缺点是净化程度受温度影响很大。

常温常压下,净化程度受到很大限制。

冷凝回收仅适用于蒸气浓度较高的情况下,因此,冷凝回收往往用做吸附、燃烧等净化设施的前处理,以减轻这些复杂、昂贵的主要措施的负荷,或预先回收可以利用的物质,这也是冷凝回收一般仅用做前处理的净化措施的原因。

至于作为极为重要的净化方法的吸收操作,则往往本身就伴随有冷凝过程,几乎所有的洗涤器都可作为接触冷凝设备。

冷凝回收还适用于处理含有大量水蒸气的高温废气,在这种情况下,由于大量水蒸气的凝结,废气中有害组分可以部分溶解在冷凝液中,这样不但可以减少气体流量,对下一步的燃烧、吸附、袋滤或高烟囱排放等净化措施也是十分有利的。

例如,有的人造纤维厂对于纺丝工序散放的含有大量水蒸气及CS2、H2S的废气,就是用大量冷却水冷却,有害组分冷凝稀释于冷却水中,尾气再经高烟囱排放。

在冷凝操作过程中,用来吸收被冷凝物质热量的工作介质称为冷却剂。

常用的冷却剂为冷水和空气,它们均是稳定且易得到的物质。

作为冷却剂的水比空气应用更广,它的优点是比热容和给热系数大,并且能冷却到更低的温度,通常的冷却水(自来水、河水或井水等)的初温度依地区条件和季节而变化,一般为4~25℃,为避免溶解在水中的盐类析出而在换热器传热面上形成垢,因此,要求冷却水的终温一般不得超过40~50℃。

如果要求将物料冷却到5~10℃,或更低的温度,就必须采用低温冷却剂。

如冰、冷冻盐水和各种低温蒸发的液态冷冻剂等。

三、冷凝操作流程用于冷凝回收的冷却方法,可分为直接冷凝和间接冷凝两种。

直接冷凝是冷却与被冷凝物质在换热器内直接接触进行冷凝的过程。

这种冷凝传热迅速,但只能用在冷却剂混入被冷凝物质后,并不影响被冷凝物质质量的情况下,如用水将空气或乙炔冷却。

间接冷凝是流体与冷却剂间的热量传递是通过间壁(传热面)进行的,这种方法是工业上应用最广泛的一种。

图13-2是用间接冷凝法处理含有高温臭味废气的流程,废气中含有60%~99%的水蒸气,温度近100℃,经表面冷凝器的间接冷却,水蒸气凝结,不凝气则抽至燃烧炉去最后处理,这样,经过冷凝器,可使废气体积减少95%以上,同时废气中所含的有害物质被冷凝,还可以进一步冷却,而另外一些可能溶解在冷凝液中。

图13-2 高温臭味残气处理流程示意图13—3则用的是接触冷凝器,冷凝液和夹带的气体一起排入一个密闭的热水池中,不凝气体靠重力分开通向燃烧炉处理。

图13-3 热有机液体储罐上的冷凝回收示意由于冷凝液被大量冷却水所稀释,所以用直接冷却方法比间接冷却方法除去空气污染物要多,一般多用于有害物不加回收或含有污染物的冷却水不需另行处理的场合。

在某些情况下,必须应用间接冷却法防尘防毒技术:第十六章有害气体的燃烧净化法第二节热力燃烧的原理热力燃烧一般用于处理废气中含可燃组分浓度较低的情况。

它和直接燃烧的区别就在于直接燃烧的废气由于本身含有较高浓度的可燃组分,它可以直接在空气中燃烧。

热力燃烧则不同,废气中可燃组分的浓度很低,燃烧过程中所放出的热量不足以满足燃烧过程所需的热量。

因此,废气本身不能作为燃料,只能作为辅助燃料燃烧过程中的助燃气体,在辅助燃料燃烧的过程中,将废气中的可燃组分销毁。

与直接燃烧相比,热力燃烧所需要的温度一般较低,通常为540~820℃。

一、热力燃烧的基本理论(一)火焰传播理论在热力燃烧过程中,一般认为,只有燃烧室的温度维持在760~820℃,驻留时间为0.5s时,有机物的燃烧才能比较完全。

而达到这个温度范围是依靠火焰传播过程来实现的。

火焰传播的理论分为两大类。

1.热传播理论这类理论认为:火焰传播是依靠燃烧时所放出的热量加热周围的气体,使其达到燃烧所需要的温度而实现的。

因此,能否实现火焰传播主要与三个方面的因素有关:①混合气体中的含氧量;②混合气体中含有可燃组分的浓度;③辅助燃料燃烧过程中所放出的热量。

当燃烧过程中放出的热量不足以使周围的气体达到燃烧所需要的温度,火焰自然不能向外传播;当助燃废气中的含氧量不足,燃烧过程难以进行,火焰也不能传播出去。

例如:丙烷气体在空气当中很容易燃烧,但在氧和氮各占12%和88%的气体中,丙烷燃烧非常困难。

此外,混合气体中可燃组分的浓度与火焰能否传播有着紧密的联系。

浓度过低,燃烧过程不能实现;浓度过高时,由于没有足够的氧而使得废气不能在正常的着火温度下产生燃烧反应,因而火焰也得不到传播。

人们将这种能够维持火焰传播的浓度范围称为爆炸极限。

使用燃烧法处理各种有机废气的过程中,爆炸极限的范围是至关重要的。

2.自由基连锁反应理论该种理论认为:在燃烧室中,火焰之所以能够进行很快的氧化反应,就是因为火焰中存在着大量活性很大的自由基。

由于自由基是具有不饱和价的自由原子或原子团,极易同其他的原子或自由基发生连续的连锁反应,而使得火焰得以传播。

1970年西里和鲍曼提出甲烷燃烧反应的历程如下。

从以上的这个历程中可以看出,由于火焰的存在,使得自由基大量产生,所产生的自由基加速了废气中可燃组分的销毁速度。

在以上的这些自由基中,是一个很重要的自由基,它主要靠水分在火焰中解离而产生。

相关主题