Simulink下的频谱分析方法实现功能:信号发生器一个信号输入,实时显示其频谱分析调用模块:信号源(Signal Processing Blockset -> Signal Processing Sources -> Sine Wave)Tip 1:不能用连续的信号源频谱观察窗(Signal Processing Blockset -> Signal Processing Sources -> Spectrum Scope)Tip 2: 不能用普通的观察窗Tip 3:必须构上设置中的Buffer input. Buffer size 越大越精细。
Tip 4: 剩下的tips读帮助。
连接关系:如下图所示原理框图实验结果:输出示意图------------------------------------------------------------实现功能:从Workspace读取一组数,进行频谱分析调用模块:From WorkspaceTip 1: 采样时间不能用0,即必须使用离散模式Tip 2: 从其他模型中Scope保存出来的“Structure with time”的数据可以直接用频谱观察窗(同上一功能)------------------------------------------------------------实现功能:从dSPACE读取一组数,进行频谱分析实现方法:1. 从dSPACE读数保存成文件,数据导入Workspace(过程略)2. 采用从其他模型的Scope保存数据为“Structure with time”的方式构建一个结构变量ScopeData13. 使用以下代码将dSPACE数据dscapture拷贝到结构变量ScopeData1中%%=[0::]; %纯粹为占位,19157为dSPACE保存数据长度for i=1:19157end%%4. 采用下图中的模型进行频谱分析实验结果:通过以上方法对单轴压电加速度传感器进行灵敏度分析,下图分别为采用dSPACE和直接利用示波器分析的结果对比。
结果分析:波形吻合,采用dSPACE测试时噪声的分贝减小了25dB。
在310Hz、370Hz和410Hz出现异常尖峰Matlab编程实现FFT实践及频谱分析内容1.用Matlab产生正弦波,矩形波,以及白噪声信号,并显示各自时域波形图2.进行FFT变换,显示各自频谱图,其中采样率,频率、数据长度自选3.做出上述三种信号的均方根图谱,功率图谱,以及对数均方根图谱4.用IFFT傅立叶反变换恢复信号,并显示恢复的正弦信号时域波形图源程序%******************************************************************** *****%% FFT实践及频谱分析 %%******************************************************************** *****%%******************************************************************** *****%%***************1.正弦波****************%fs=100;%设定采样频率N=128;n=0:N-1;t=n/fs;f0=10;%设定正弦信号频率%生成正弦信号x=sin(2*pi*f0*t);figure(1);subplot(231);plot(t,x);%作正弦信号的时域波形xlabel('t');ylabel('y');title('正弦信号y=2*pi*10t时域波形');grid;%进行FFT变换并做频谱图y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(1);subplot(232);plot(f,mag);%做频谱图axis([0,100,0,80]);xlabel('频率(Hz)');ylabel('幅值');title('正弦信号y=2*pi*10t幅频谱图N=128'); grid;%求均方根谱sq=abs(y);figure(1);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('正弦信号y=2*pi*10t均方根谱');grid;%求功率谱power=sq.^2;figure(1);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('正弦信号y=2*pi*10t功率谱');grid;%求对数谱ln=log(sq);figure(1);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('正弦信号y=2*pi*10t对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(1);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的正弦信号波形');grid;%****************2.矩形波****************%fs=10;%设定采样频率t=-5::5;x=rectpuls(t,2);x=x(1:99);figure(2);subplot(231);plot(t(1:99),x);%作矩形波的时域波形xlabel('t');ylabel('y');title('矩形波时域波形');grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(2);subplot(232);plot(f,mag);%做频谱图xlabel('频率(Hz)');ylabel('幅值');title('矩形波幅频谱图');grid;%求均方根谱sq=abs(y);figure(2);subplot(233);plot(f,sq);xlabel('频率(Hz)'); ylabel('均方根谱');title('矩形波均方根谱'); grid;%求功率谱power=sq.^2;figure(2);subplot(234);plot(f,power);xlabel('频率(Hz)'); ylabel('功率谱');title('矩形波功率谱'); grid;%求对数谱ln=log(sq);figure(2);subplot(235);plot(f,ln);xlabel('频率(Hz)'); ylabel('对数谱');title('矩形波对数谱'); grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs; figure(2);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的矩形波波形');grid;%****************3.白噪声****************% fs=10;%设定采样频率t=-5::5;x=zeros(1,100);x(50)=100000;figure(3);subplot(231);plot(t(1:100),x);%作白噪声的时域波形xlabel('t');ylabel('y');title('白噪声时域波形');grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(3);subplot(232);plot(f,mag);%做频谱图xlabel('频率(Hz)');ylabel('幅值');grid;%求均方根谱sq=abs(y);figure(3);subplot(233);plot(f,sq);xlabel('频率(Hz)'); ylabel('均方根谱');title('白噪声均方根谱'); grid;%求功率谱power=sq.^2;figure(3);subplot(234);plot(f,power);xlabel('频率(Hz)'); ylabel('功率谱');title('白噪声功率谱'); grid;%求对数谱ln=log(sq);figure(3);subplot(235);plot(f,ln);xlabel('频率(Hz)'); ylabel('对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(3);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的白噪声波形'); grid;。