当前位置:文档之家› 带电粒子在复合场中的运动典型例题汇编

带电粒子在复合场中的运动典型例题汇编

专题八带电粒子在复合场中的运动考纲解读 1.能分析计算带电粒子在复合场中的运动.2.能够解决速度选择器、磁流体发电机、质谱仪等磁场的实际应用问题1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图1所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,则下列说确的是()A.小球一定带正电B.小球可能做匀速直线运动C.带电小球一定做匀加速直线运动;D.运动过程中,小球的机械能增大;图1 2.[带电粒子在复合场中的匀速圆周运动]如图2所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说确的是() A.小球一定带正电B.小球一定带负电;C.小球的绕行方向为顺时针;D.改变小球的速度大小,小球将不做圆周运动图2考点梳理一、复合场1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域,并不重叠或相邻或在同一区域,电场、磁场交替出现.2.三种场的比较项目名称力的特点功和能的特点重力场大小:G=mg方向:竖直向下重力做功与路径无关重力做功改变物体的重力势能静电场大小:F=qE方向:a.正电荷受力方向与场强方向相同b.负电荷受力方向与场强方向相反电场力做功与路径无关W=qU电场力做功改变电势能磁场洛伦兹力F=q v B方向可用左手定则判断洛伦兹力不做功,不改变带电粒子的动能二、带电粒子在复合场中的运动形式1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.3.[质谱仪原理的理解]如图3所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有磁感应强度为B0的匀强磁场.下列表述正确的是()A.质谱仪是分析同位素的重要工具;B.速度选择器中的磁场方向垂直纸面向外;C.能通过狭缝P的带电粒子的速率等于E/BD.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小;图3 4.[回旋加速器原理的理解]劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图4所示.置于高真空中的D 形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U.若A处粒子源产生的质子质量为m、电荷量为+q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说确的是()A.质子被加速后的最大速度不可能超过2πRf ;B.质子离开回旋加速器时的最大动能与加速电压U成正比C.质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为2∶1 ;D.不改变磁感应强度B和交流电频率f,该回旋加速器的最大动能不变图4规律总结带电粒子在复合场中运动的应用实例1.质谱仪(1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成.图5(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12m v 2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式q v B =m v 2r .由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 2. 2. 回旋加速器(1)构造:如图6所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处 接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由q v B =m v 2r ,得 E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒 图6半径r 决定,与加速电压无关.(特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动) 的原理.)3. 速度选择器(如图7所示)(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =q v B , 即v =EB . 图74. 磁流体发电机(1)磁流体发电是一项新兴技术,它可以把能直接转化为电能. (2)根据左手定则,如图8中的B 是发电机正极.(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q UL =q v B 得两极板间能达到的最大电势差U =BL v . 图85. 电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负 离子),在洛伦兹力的作用下横向偏转,a 、b间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:q v B =qE =q U d ,所以v =U Bd ,因此液体流量Q =S v =πd 24·U Bd =πdU4B . 图9考点一 带电粒子在叠加场中的运动1. 带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题. (3)电场力、磁场力、重力并存 ①若三力平衡,一定做匀速直线运动. ②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2. 带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例1 如图10所示,带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为B 的圆形匀强磁场区域 ,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.若撤去磁场,质子仍从O 1点以相同速度射入,则经t 02时间打到极板上. 图10(1)求两极板间电压U ;(2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动L ∶(L -2R )=t 0∶t 02,解得L =4R粒子在电场中做类平抛运动:L -2R =v 0·t 02a =qE mR =12a (t 02)2在复合场中做匀速运动:q U2R=q v 0B联立各式解得v 0=4R t 0,U =8R 2Bt 0(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R因为R =12qE m (t 02)2,所以qE m =q v 0B m =8R t20根据牛顿第二定律有q v B =m v 2r,解得v =2(2-1)Rt 0所以,粒子在两板左侧间飞出的条件为0<v <2(2-1)Rt 0答案 (1)8R 2Bt 0 (2)0<v <2(2-1)R t 0技巧点拨带电粒子(带电体)在叠加场中运动的分析方法1.弄清叠加场的组成. 2.进行受力分析.3.确定带电粒子的运动状态,注意运动情况和受力情况的结合. 4.画出粒子运动轨迹,灵活选择不同的运动规律.(1)当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.(2)当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解. (3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解. (4)对于临界问题,注意挖掘隐含条件. 5.记住三点:(1)受力分析是基础; (2)运动过程分析是关键;(3)根据不同的运动过程及物理模型,选择合适的定理列方程求解.方法点拨解决带电粒子在组合场中运动问题的思路方法突破训练1 如图11所示,空间存在着垂直纸面向外的水平匀强磁场,磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,速度减小到原来的一半,并沿x 轴正方向做匀速直线运动,已知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静电力忽略不计.(1)求两液滴相撞后共同运动的速度大小;(2)求液滴b 开始下落时距液滴a 的高度h . 图11答案 (1)E B (2)2E 23gB 2解析 液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用. (1)设液滴a 质量为m 、电荷量为q ,则液滴b 质量为m 、电荷量为-2q , 液滴a 平衡时有qE =mg ① a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态, 重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上, 因此满足q v B +qE =2mg ②由①、②两式,可得相撞后速度v =EB(2)对b ,从开始运动至与a 相撞之前,由动能定理有W E +W G =ΔE k ,即(2qE +mg )h =12m v 20 ③a 、b 碰撞后速度减半,即v =v 02,则v 0=2v =2EB再代入③式得h =m v 204qE +2mg =v 206g =2E 23gB 2考点二 带电粒子在组合场中的运动1. 近几年各省市的高考题在这里的命题情景大都是组合场模型,或是一个电场与一个磁场相邻,或是两个或多个磁场相邻.2. 解题时要弄清楚场的性质、场的方向、强弱、围等. 3. 要进行正确的受力分析,确定带电粒子的运动状态. 4. 分析带电粒子的运动过程,画出运动轨迹是解题的关键.例2 (2012·理综·23)如图12甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子由S 1静止释放,粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)(1)求粒子到达S 2时的速度大小v 和极板间距d .(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.(3)若已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场运动的时间和磁感应强度的大小. 审题指导 1.粒子的运动过程是什么?2.要在t =3T 0时使粒子再次到达S 2,且速度为零,需要满足什么条件?解析 (1)粒子由S 1至S 2的过程,根据动能定理得qU 0=12m v 2 ①由①式得v = 2qU 0m②设粒子的加速度大小为a ,由牛顿第二定律得q U 0d=ma ③由运动学公式得d =12a (T 02)2 ④联立③④式得d =T 04 2qU 0m⑤(2)设磁感应强度的大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,由牛顿第二定律得q v B =m v 2R⑥要使粒子在磁场中运动时不与极板相撞,需满足2R >L2⑦联立②⑥⑦式得B <4L 2mU 0q(3)设粒子在两边界之间无场区向左匀速运动的过程所用时间为t 1,有d =v t 1 ⑧ 联立②⑤⑧式得t 1=T 04⑨若粒子再次到达S 2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t 2,根据运动学公式得d =v2t 2 ⑩联立⑧⑨⑩式得t 2=T 02 ⑪设粒子在磁场中运动的时间为tt =3T 0-T 02-t 1-t 2 ⑫联立⑨⑪⑫式得t =7T 04⑬设粒子在匀强磁场中做匀速圆周运动的周期为T ,由⑥式结合运动学公式得T =2πmqB⑭由题意可知T =t ⑮联立⑬⑭⑮式得B =8πm7qT 0.答案 (1) 2qU 0m T 04 2qU 0m (2)B <4L 2mU 0q(3)7T 04 8πm 7qT 0突破训练2 如图13所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E 和E/2;区域Ⅱ有垂直向外的水平匀强磁场,磁感应强度为B .一质量为m 、带电荷量为q 的带负电粒子(不计重力)从左边界O 点正上方的M 点以速度v 0水平射入电场,经水平分界线OP 上的A 点与OP 成60°角射入区域Ⅱ的磁场,并垂直竖直边界CD 进入Ⅲ区域的匀强电场中.求:(1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径; (2)O 、M 间的距离;(3)粒子从M 点出发到第二次通过CD 边界所经历的时间. 图13答案 (1)2m v 0qB (2) 3m v 022qE (3)(8+3)m v 0qE +πm3qB审题指导 1.粒子的运动过程是怎样的? 2.尝试画出粒子的运动轨迹.3.注意进入磁场时的速度的大小与方向.解析 (1)粒子的运动轨迹如图所示,其在区域Ⅰ的匀强电场中做类平抛运动,设粒子过A 点时速度为v ,由类平抛运动规律知v =v 0cos 60°粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得Bq v =m v 2R ,所以R =2m v 0qB(2)设粒子在区域Ⅰ的电场中运动时间为t 1,加速度为a .则有qE =ma ,v 0tan 60°=at 1,即t 1=3m v 0qEO 、M 两点间的距离为L =12at 21=3m v 022qE(3)设粒子在Ⅱ区域磁场中运动时间为t 2 则由几何关系知t 2=T 16=πm3qB设粒子在Ⅲ区域电场中运动时间为t 3,a ′=qE 2m =qE2m则t 3=2×2v 0a ′=8m v 0qE粒子从M 点出发到第二次通过CD 边界所用时间为t =t 1+t 2+t 3=3m v 0qE +πm 3qB +8m v 0qE =(8+3)m v 0qE +πm3qB42.带电粒子在交变电场和交变磁场中的运动模型问题的分析解析 (1)粒子在磁场中运动时q v B =m v 2R(2分)T =2πRv (1分)解得T =2πm qB =4×10-3 s (1分)(2)粒子的运动轨迹如图所示,t =20×10-3 s 时粒子在坐标系做了两个 圆周运动和三段类平抛运动,水平位移x =3v 0T =9.6×10-2 m (1分)竖直位移y =12a (3T )2 (1分)Eq =ma (1分) 解得y =3.6×10-2 m故t =20×10-3 s 时粒子的位置坐标为:(9.6×10-2 m ,-3.6×10-2 m) (1分) (3)t =24×10-3 s 时粒子的速度大小、方向与t =20×10-3 s 时相同,设与水平方向夹角为 α (1分) 则v =v 20+v 2y (1分) v y =3aT (1分)tan α=v yv 0 (1分)解得v =10 m/s (1分)与x 轴正向夹角α为37°(或arctan 34)斜向右下方 (1分)答案 (1)4×10-3 s (2)(9.6×10-2 m ,-3.6×10-2 m) (3)10 m/s 方向与x 轴正向夹角α为37°(或arctan 34)突破训练3 如图15甲所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上的场强大小为E =2.5×102 N/C 的匀强电场(上、下及左侧无界).一个质量为m =0.5 kg 、电荷 量为q =2.0×10-2 C 的可视为质点的带正电小球,在t =0时刻以大小为v 0的水平初速度 向右通过电场中的一点P ,当t =t 1时刻在电场所在空间中加上一如图乙所示随时间周期 性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点, PD 间距为L ,D 到竖直面MN 的距离DQ 为L /π.设磁感应强度垂直纸面向里为正.(g = 10 m/s 2)图15(1)如果磁感应强度B 0为已知量,使得小球能竖直向下通过D 点,求磁场每一次作用时 间t 0的最小值(用题中所给物理量的符号表示);(2)如果磁感应强度B 0为已知量,试推出满足条件的时刻t 1的表达式(用题中所给物理量 的符号表示);(3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小(用题中所给物理量的符号表示).答案 (1)3πm 2qB 0 (2)L v 0+mqB 0 (3)2πm v 0qL 6L v 0解析 (1)当小球仅有电场作用时:mg =Eq ,小球将做匀速直线运 动.在t 1时刻加入磁场,小球在时间t 0将做匀速圆周运动,圆周 运动周期为T 0,若竖直向下通过D 点,由图甲分析可知: t 0=3T 04=3πm 2qB 0(2)PF -PD =R ,即: 甲 v 0t 1-L =Rq v 0B 0=m v 20/R所以v 0t 1-L =m v 0qB 0,t 1=L v 0+mqB 0(3)小球运动的速率始终不变,当R 变大时,T 0也增加,小球在电 磁场中的运动的周期T 增加,在小球不飞出电磁场的情况下,当T 最大时有:DQ =2R =L π=2m v 0qB 0 B 0=2πm v 0qL ,T 0=2πR v 0=Lv 0 乙由图分析可知小球在电磁场中运动的最大周期: T =8×3T 04=6Lv 0,小球运动轨迹如图乙所示.高考题组1. (2012·课标全国·25)如图16,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线从圆上的a 点射入柱形区域,从圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为3/5R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线从a 点射入柱形区域,也从b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小. 答案 14qRB 25m解析 粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛伦兹力公式得q v B =m v 2r ①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 点和d 点.由几何关系知,线段ac 、bc 和过a 、b 两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此ac =bc =r ②设cd =x ,由几何关系得ac =45R +x ③bc =35R +R 2-x 2 ④联立②③④式得r =75R ⑤再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设 其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE =ma ⑥粒子在电场方向和直线方向运动的距离均为r ,由运动学公式得r =12at 2 ⑦r =v t ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E =14qRB 25m .2. (2012·理综·24)如图17所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M 点.(1)判断墨滴所带电荷的种类,并求其电荷量;(2)求磁感应强度B 的值; 图17 (3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?答案 (1)负电荷 mgdU (2)v 0U gd 2 (3)4v 0U 5gd 2解析 (1)墨滴在电场区域做匀速直线运动,有q Ud=mg ① 由①式得:q =mgdU ②由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力, 墨滴做匀速圆周运动,有q v 0B =m v 02R ③考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知墨滴在该区域恰完成四分之 一圆周运动,则半径R =d ④由②③④式得B =v 0Ugd 2(3)根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为R ′,有q v 0B ′=m v 02R ′ ⑤由图可得:R ′2=d 2+(R ′-d2)2 ⑥由⑥式得:R ′=54d ⑦联立②⑤⑦式可得:B ′=4v 0U 5gd 2.3. (2012·理综·24)有人设计了一种带电颗粒的速率分选装置,其原理如图18所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM 矩形区域还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1k的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′O进入两金属板之间,其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板,重力加速度为g ,PQ =3d , NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间的相互作用.求:(1)电场强度E 的大小; (2)磁感应强度B 的大小;(3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离. 图18 答案 见解析解析 (1)设带电颗粒的电荷量为q ,质量为m .由于粒子从Q 点离开磁场后做匀速直线运 动,则有Eq =mg 将q m =1k代入,得E =kg .(2)如图所示,粒子在磁场区域由洛伦兹力提供其做圆周运动的向心力,则有q v 0B =m v 20R ①而由几何知识有R 2=(3d )2+(R -d )2 ②联立①②解得B =k v 05d . ③(3)设速度为λv 0的颗粒在磁场区域运动时竖直方向的位移为y 1, 离开磁场后做匀速直线运动时竖直方向的位移为y 2,偏转角为θ,如图所示,有qλv 0B =m (λv 0)2R 1④将q m =1k 及③式代入④式,得 R 1=5d λ tan θ=221)3(3d R d -y 1=R 1-)3(221d R - y 2=l tan θ则速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离为 y =y 1+y 2解得y =d (5λ-25λ2-9)+3l25λ2-9.模拟题组4. 如图19所示,坐标平面第Ⅰ象限存在大小为E =4×105 N/C 、方向水平向左的匀强电场,在第Ⅱ象限存在方向垂直纸面向里的匀强磁场.质荷比为m q =4×10-10 N/C 的带正电粒子从x轴上的A 点以初速度v 0=2×107 m/s 垂直x 轴射入电场,OA =0.2 m ,不计重力.求: 图19 (1)粒子经过y 轴时的位置到原点O 的距离;(2)若要求粒子不能进入第三象限,求磁感应强度B 的取值围(不考虑粒子第二次进入 电场后的运动情况.)答案 (1)0.4 m (2)B ≥(22+2)×10-2 T解析 (1)设粒子在电场中运动的时间为t ,粒子经过y 轴时的位置与原点O 的距离为y ,则:s OA =12at 2a =F m E =F qy =v 0t联立解得a =1.0×1015 m/s 2 t =2.0×10-8 s y =0.4 m (2)粒子经过y 轴时在电场方向的分速度为: v x =at =2×107 m/s粒子经过y 轴时的速度大小为: v =v x 2+v 02=22×107 m/s与y 轴正方向的夹角为θ,θ=arctanv xv 0=45° 要使粒子不进入第三象限,如图所示,此时粒子做匀速圆周 运动的轨道半径为R ,则:R +22R ≤yq v B =m v 2R联立解得B ≥(22+2)×10-2 T.5. 如图20甲所示,在以O 为坐标原点的xOy 平面,存在着围足够大的电场和磁场,一个带正电小球在t =0时刻以v 0=3gt 0的初速度从O 点沿+x 方向(水平向右)射入该空 间,在t 0时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强大小E 0=mg q ,磁场垂直于xOy 平面向外,磁感应强度大小B 0=πmqt 0,已知小球的质量为m ,带电荷量为q ,时间单位为t 0,当地重力加速度为g ,空气阻力不计.试求:图20(1)t 0末小球速度的大小;(2)小球做圆周运动的周期T 和12t 0末小球速度的大小;(3)在给定的xOy 坐标系中,大体画出小球在0到24t 0运动轨迹的示意图; (4)30t 0小球距x 轴的最大距离. 答案 (1)10gt 0 (2)2t 0 13gt 0 (3)见解析图(4)⎝ ⎛⎭⎪⎫92+3+32πgt 20 解析 (1)由题图乙知,0~t 0,小球只受重力作用,做平抛运动,在t 0末: v =v 0x 2+v 0y 2=(3gt 0)2+(gt 0)2=10gt 0(2)当同时加上电场和磁场时,电场力F 1=qE 0=mg ,方向向上因为重力和电场力恰好平衡,所以小球只受洛伦兹力而做匀速圆周运动,有q v B 0=m v 2r运动周期T =2πrv ,联立解得T =2t 0由题图乙知,电场、磁场同时存在的时间正好是小球做匀速圆周运动周期的5倍,即在 这10t 0,小球恰好做了5个完整的匀速圆周运动.所以小球在t 1=12t 0时刻的速度相 当于小球做平抛运动t =2t 0时的末速度. v y 1=g ·2t 0=2gt 0,v x 1=v 0x =3gt 0 所以12t 0末v 1=v x 12+v y 12=13gt 0(3)24t 0运动轨迹的示意图如图所示.(4)分析可知,小球在30t 0时与24t 0时的位置相同,在24t 0小球相当于做了t 2=3t 0的平 抛运动和半个圆周运动.23t 0末小球平抛运动的竖直分位移大小为y 2=12g (3t 0)2=92gt 20竖直分速度v y 2=3gt 0=v 0,所以小球与竖直方向的夹角为θ=45°,速度大小为 v 2=32gt 0此后小球做匀速圆周运动的半径r 2=m v 2qB 0=32gt 20π30t 0小球距x 轴的最大距离:y 3=y 2+(1+cos 45°)r 2=⎝ ⎛⎭⎪⎫92+3+32πgt 20专题突破练 带电粒子在复合场中的运动(限时:60分钟)►题组1 对带电粒子在叠加场中运动的考查1. 如图1所示,在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖直足够长固定绝缘杆MN ,小球P 套在杆上,已知P 的质量为m , 电荷量为+q ,电场强度为E ,磁感应强度为B ,P 与杆间的动摩擦 因数为μ,重力加速度为g .小球由静止开始下滑直到稳定的过程中( )A .小球的加速度一直减小B .小球的机械能和电势能的总和保持不变 图1C .下滑加速度为最大加速度一半时的速度可能是v =2μqE -mg2μqBD .下滑加速度为最大加速度一半时的速度可能是v =2μqE +mg2μqB答案 CD解析 对小球受力分析如图所示,则mg -μ(Eq -q v B )=ma ,随着v 的增加,小球加速度先增加,当Eq =q v B 时加速度达到最大值a max =g ,继续运动,mg -μ(q v B -Eq )=ma ,随着v 的增加,a 逐渐减 小,所以A 错误.因为有摩擦力做功,机械能与电势能总和在减小,B 错误.若在前半段达到最大加速度的一半,则mg -μ(Eq -q v B )=m g2,得v =2μqE -mg 2μqB,若在后半段达到最大加速度的一半,则mg -μ(q v B -Eq )=m g2,得v =2μqE +mg 2μqB ,故C 、D 正确.2. 如图2所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面做匀速圆周运动,则 ( ) 图2 A .小球可能带正电B .小球做匀速圆周运动的半径为r =1B2UEg。

相关主题