当前位置:文档之家› 最新第十二章习题答案new

最新第十二章习题答案new

1、分析电子衍射与X 衍射有何异同?答:相同点:① 都是以满足布拉格方程作为产生衍射的必要条件。

② 两种衍射技术所得到的衍射花样在几何特征上大致相似。

不同点:① 电子波的波长比x 射线短的多,在同样满足布拉格条件时,它的衍射角很小,约为10-2rad 。

而X 射线产生衍射时,其衍射角最大可接近2。

② 在进行电子衍射操作时采用薄晶样品,增加了倒易阵点和爱瓦尔德球相交截的机会,使衍射条件变宽。

③ 因为电子波的波长短,采用爱瓦尔德球图解时,反射球的半径很大,在衍射角θ较小的范围内反射球的球面可以近似地看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内。

④ 原子对电子的散射能力远高于它对x 射线的散射能力,故电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟。

2、倒易点阵与正点阵之间关系如何?倒易点阵与晶体的电子衍射斑点之间有何对应关系? 答:倒易点阵是与正点阵相对应的量纲为长度倒数的一个三维空间点阵,通过倒易点阵可以把晶体的电子衍射斑点直接解释成晶体相对应晶面的衍射结果,可以认为电子衍射斑点就是与晶体相对应的倒易点阵某一截面上阵点排列的像。

关系:① 倒易矢量g hkl 垂直于正点阵中对应的(hkl )晶面,或平行于它的法向N hkl② 倒易点阵中的一个点代表正点阵中的一组晶面③ 倒易矢量的长度等于点阵中的相应晶面间距的倒数,即g hkl =1/d hkl④ 对正交点阵有a *//a ,b *//b ,c *//c ,a *=1/a ,b *=1/b ,c *=1/c 。

⑤ 只有在立方点阵中,晶面法向和同指数的晶向是重合的,即倒易矢量g hkl 是与相应指数的晶向[hkl]平行⑥ 某一倒易基矢量垂直于正交点阵中和自己异名的二基矢所成平面。

3、用爱瓦尔德图解法证明布拉格定律。

证:如图,以入射X 射线的波长λ的倒数为半径作一球(厄瓦尔德球),将试样放在球心O 处,入射线经试样与球相交于O*;以O*为倒易原点,若任一倒易点G 落在厄瓦尔德球面上,则G 对应的晶面满足衍射条件产生衍射。

令入射方向矢量为k (k = 1/λ),衍射方向矢量为k ,,衍射矢量为g 。

则有g = 2ksin θ。

∵g=1/d ;k=1/λ,∴2dsin θ=λ。

即厄瓦尔德球图解与布拉格方程等价。

4、画出fcc、bcc晶体的倒易点阵,并标出基本适量a*,b*,c*。

5、何为零层倒易面和晶带定理?说明同一晶带中各晶面及其倒易矢量与晶带轴之间的关系。

答:在倒易点阵中,通过倒易原点O*且与某一晶带轴[uvw]垂直的二维平面称为零层倒易面。

因为零层倒易面上的倒易面上的各倒易矢量都和晶带轴r=[uvw]垂直,故有g.r=0即hu+kv+lw=0这就是晶带定理。

6、为何对称入射时,即只有倒易点阵原点在爱瓦尔德球面上,也能得到除中心斑点以外的一系列衍射斑点?答:如果倒易点是几何点,那么对称入射时就没有倒易点落在厄瓦尔德球上。

但是,由于电镜样品是薄样品,倒易点拉长成倒易杆。

倒易杆与厄瓦尔德球相交可以产生衍射。

8、举例说明如何用选区衍射的方法来确定新相的惯习面及母相与新相的位向关系。

答:例如分析钢淬火时,马氏体在奥氏体的一定结晶面上形成的,此面为惯习面,它在相变过程中应该保持不变形与不转动。

由于马氏体相变时原子规则地发生位移,使新相(马氏体)和母相之间始终保持一定的位向关系。

在铁基合金中由面心立方母相γ变为体心立方(正方)马氏体M时具有著名的K-S关系:{111}γ∥{011}M,<01ī>γ∥<ī11>M和西山关系:{111}γ∥{110}M,<211>γ∥<110>M。

惯性面的取向分析:利用透射电镜测定惯性面的指数,其根据是选区衍射花样与选区内组织形貌的微区对应性。

这里特介绍一种最基本、较简便的方法。

该方法的基本要点为:使用双倾台或旋转台倾转样品,使惯性面平行于入射束方向,在此位向下获得的衍射花样中将出现该惯性面的衍射斑点。

把这个位向下拍照的形貌像和相应的选区衍射花样对照,经磁转角校正后,即可确定惯性面的指数。

其具体操作步骤如下:1) 利用双倾台倾转样品,使惯性面处于与入射束平行的方向。

2) 拍照包含有惯性面的形貌像,以及该视场的选区电子衍射花样。

3) 标定选区电子衍射花样,经磁转角校正后(即确保TEM方式下和SAED方式下,没有磁转角差异),将惯性面在形貌像中的迹线(TEM图像的得边界线)画在衍射花样中。

4) 由透射斑点作迹线的垂线,该垂线所通过的衍射斑点的指数即为惯性面的指数。

例如:镍基合金中的片状—Ni3Nb相常沿着基体(面心立方结构)的某些特定平面生长。

当片状相表面相对入射束倾斜一定角度时,在形貌像中片状相的投影宽度较大(见图实4—1a);如果倾斜样品使片状相表面逐渐趋近平行于入射束,其在形貌像中的投影宽度将不断减小;当入射束方向与片状相表面平行时,片状相在形貌像中显示最小的宽度(图实4—1b)。

图实4—1c是入射电子束与片状相表面平行时拍照的基体衍射花样。

由图实4—1c所示的衍射花样的标定结果,可以确定片状相的生长惯习面为基体的(111)面。

通常习惯用基体的晶面表示第二相的惯习面。

母相与新相的位向分析:利用两相合成的电子衍射花样的标定结果,可以直接确定两相间的取向关系。

具体的分析方法是,在衍射花样中找出两相平行的倒易矢量,即两相的这两个衍射斑点的连线通过透射斑点,其所对应的晶面互相平行,由此可获得两相间一对晶面的平行关系;另外,由两相衍射花样的晶带轴方向互相平行,可以得到两相间一对晶向的平行关系。

由图实4—3a给出的两相合成电子衍射花样的标定结果可确定两相的取向关系:(200)M∥(002),[011]M∥。

例如根据书上P176的衍射斑点的结果,可知马氏体的晶带轴是[001],奥氏体的晶带轴是[011]。

马氏体和奥氏体的位向关系: 9、说明多晶、单晶及非晶衍射花样的特征及形成原理。

答:多晶体的电子衍射花样是一系列不同半径的同心圆环单晶衍射花样是由排列得十分整齐的许多斑点所组成的非晶态物质的衍射花样只有一个漫散中心斑点单晶花样是一个零层二维倒易截面,其倒易点规则排列,具有明显对称性,且处于二维网络的格点上。

因此表达花样对称性的基本单元为平行四边形。

单晶电子衍射花样就是(uvw)*0零层倒易截面的放大像。

多晶试样可以看成是由许多取向任意的小单晶组成的。

故可设想让一个小单晶的倒易点阵绕原点旋转,同一反射面hkl 的各等价倒易点(即(hkl )平面族中各平面)将分布在以1/d hkl 为半径的球面上,而不同的反射面,其等价倒易点将分布在半径不同的同心球面上,这些球面与反射球面相截,得到一系列同心园环,从反射球心向各园环连线,投影到屏上,就是多晶电子衍射图。

非晶的原子表现为近程有序,长程无序;原子的分布在非常小的范围内有一定的序。

由于单个原子团或多面体中原子具有近邻关系反映到倒空间也具有对应原子近邻距离的一个或两个倒易球面,反射球面与它们相交得到的轨迹都是一个或两个半径恒定并且以倒易点阵原点为中心同心圆环。

一、填空题1、电子衍射和X 射线衍射的不同之处在于入射波长不同、试样尺寸形状不同,以及样品对电子和X 射线的散射能力不同。

2、电子衍射产生的复杂衍射花样是高阶劳厄斑、超结构斑点、二次衍射、孪晶斑点和菊池花样。

3、偏离矢量S 的最大值对应倒易杆的长度,它反映的是θ角偏离布拉格方程的程度。

4、单晶体衍射花样标定中最重要的一步是确定晶体结构。

5、二次衍射可以使密排六方、金刚石结构的花样中在本该消光的位置产生衍射花样,但体心立方和面心立方结构的花样中不会产生多余衍射。

6、倒易矢量的方向是对应正空间晶面的 法线 ;倒易矢量的长度等于对应 晶面间距的倒数 。

7、只要倒易阵点落在厄瓦尔德球面上,就表示该 晶面 满足 布拉格 条件,能产生 衍射 。

()()[][]⎭⎬⎫M M A 001//011011//111A二、名词解释1、偏离矢量s :倒易杆中心至与爱瓦尔德球面交截点的距离可用矢量s 表示,s 就是偏离矢量。

2、晶带定律:凡是属于[uvw]晶带的晶面,它的晶面指数(hkl)都必须符合hu+kv+lw=0,通常把这种关系式称为晶带定律。

3、相机常数:定义 K=Lλ,称相机常数,其中L 为镜筒长度,λ为电子波长。

三、选择题1、单晶体电子衍射花样是( A )。

A. 规则的平行四边形斑点;B. 同心圆环;C. 晕环;D.不规则斑点。

2、 薄片状晶体的倒易点形状是( C )。

A. 尺寸很小的倒易点;B. 尺寸很大的球;C. 有一定长度的倒易杆;D. 倒易圆盘。

3、 当偏离矢量S<0时,倒易点是在厄瓦尔德球的( A )。

A. 球面外;B. 球面上;C. 球面内;D. B+C 。

4、 能帮助消除180º不唯一性的复杂衍射花样是( A )。

A. 高阶劳厄斑;B. 超结构斑点;C. 二次衍射斑;D. 孪晶斑点。

5、 菊池线可以帮助( D )。

A. 估计样品的厚度;B. 确定180º不唯一性;C. 鉴别有序固溶体;D. 精确测定晶体取向。

6、 如果单晶体衍射花样是正六边形,那么晶体结构是( D )。

A. 六方结构;B. 立方结构;C. 四方结构;D. A 或B 。

7、有一倒易矢量为*+*+*=*c b a g 22,与它对应的正空间晶面是( C )。

A. (210);B. (220);C. (221);D. (110);。

四、 是非题1、多晶衍射环和粉末德拜衍射花样一样,随着环直径增大,衍射晶面指数也由低到高。

(√)2、单晶衍射花样中的所有斑点同属于一个晶带。

(×)3、偏离矢量S=0时,衍射斑点最亮。

这是因为S=0时是精确满足布拉格方程,所以衍射强度最大。

( √ )4、对于未知晶体结构,仅凭一张衍射花样是不能确定其晶体结构的。

还要从不同位向拍摄多幅衍射花样,并根据材料成分、加工历史等或结合其它方法综合判断晶体结构。

(√)5、电子衍射和X 射线衍射一样必须严格符合布拉格方程。

(×)6、倒易矢量能唯一地代表对应的正空间晶面。

(√ )五、问答题1、试推导电子衍射的基本公式,并指出L λ的物理意义。

解:图为电子衍射花样形成原理图。

其中样品放在爱瓦尔德球的球心O 处。

当入射电子束和样品内某一组晶面(h k l )相遇,并满足布拉格方程时,在K ˊ方向产生衍射束,其中图中O ˊ、G ˊ点分别为入射束与衍射束在底片上产生的透射斑点(中心斑点)和衍射斑点。

hkl g (矢量)是衍射晶面的倒易矢量,其端点O *,G 位于爱瓦尔德球面上,投影G ˊ通过转换进入正空间。

∵电子束发散角很小,约2º-3º,∴可认为△OO *G ∽△OO ˊG ˊ,那么矢量hkl g 与矢量k 垂直∴有R/L=hkl g /k又∵有hkl g =1/hkl d k=1/λ∴R=L λ/hkl d = L λhkl g …………………⑴又∵近似有矢量R ∥矢量hkl g∴上式亦可以写成R = L λg ……………⑵式⑴⑵就是电子衍射的基本公式式中L λ称为电子衍射的相机常数(L 为相机长度)。

相关主题