当前位置:文档之家› 供电工程课程设计

供电工程课程设计

1 设计要求及概述1.1 设计要求(1) 在规定时间内完成以上设计内容;(2) 用计算机画出电气主接线图;(3) 编写设计说明书(计算书),设备选择要列出表格。

1.2 概述随着电力行业的不断发展,人们对电力供应的要求越来越高,特别是供稳固性、可靠性和持续性。

然而电网的稳固性、可靠性和持续性往往取决于变电所的合理设计和配置。

一个典型的变电站要求变电设备运行可靠、操作灵活、经济合理、扩建方便。

电能是发展国民经济的基础,是一种无形的、不能大量储存的二次能源。

电能的发、变、送、配和用电,几乎是在同一瞬间完成的,须随时保持功率平衡。

要满足国民经济发展的要求,电力工业必须超前发展,这是世界电力工业发展规律,因此,做好电力规划,加强电网建设,就尤为重要。

变电所作为变电站作为电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。

对其进行设计势在必行,合理的变电所不仅能充分地满足当地的供电需求,还能有效地减少投资和资源浪费。

本次设计根据一般变电所设计的步骤进行设计,包括负荷统计,主变选择,主接线选择,短路电流计算,设备选择和校验,进出线选择。

2 负荷计算与无功补偿2.1计算负荷方法取其安装最大负荷为有功功率计算负荷。

所用到的公式:Qctan(arccosϕ=Pc)∙Scϕ=Pccos÷Ic∙Sc=)/(Un32.2陶瓷厂负荷计算Pc)Qc=tan(arccos K==ϕ1051⨯∙7339.3.)var82tan(arccos.01282=1.823.cosϕ÷.01051A=PcKV=÷Sc∙31282/(=)=1.∙=⨯10ScUnA/(Ic0.743)同理可以计算出其他各点的计算负荷,整理得下表:2.3 总负荷计算(1)补偿前的负荷计算∑⋅iPc =1225.5708.3591.24223.1051+⨯+++⨯200⨯3.230+6.2149.2404.1365.118++++=kw 2.7428∑⋅i Qc =213.4+2 743.9+442.8+420.7+181.6+2 733.9⨯+var9.53380.1337.1807.918.858.190k =++++取同时系数 ∑=95.0P K ∑=97.0Q KPc =i c P ⋅∑∙K ∑p =7056.8kw =0.95 7428.2 Qc =i c Q ⋅∑∙K ∑q =5178.7kvar =0.97 5338.9Sc=22Qc Pc +=225178.78.7056+=A 8753.1kv ⋅cos Φ=Sc Pc =1.87538.7056=0.806 Ic=u Sc3=Sc Pc=505.4 (2)确定无功补偿容量在10KV 侧设置无功自动补偿,补偿后目标功率因数取0.9,无功补偿容量为:)]'tan(arccos )s [tan(arcco ϕϕ-∙=Pc Qrc )]9.0tan(arccos )806.0s [tan(arcco 8.7056-⨯= 7.1764=Kvar由计算结果可确定选取4组容量为500 Kvar 的无功补偿柜。

(3) 补偿后的视在计算负荷AKV Qrc Qc Pc Sc ∙=-+=-+=7.7739)20007.5178(8.7056)(2222 9.0912.07.7739/8.7056/cos >===Sc Pc ϕ 满足要求。

3 主变压器选择3.1 变压器选择原则(1)主变容量和台数的选择,应根据《电力系统设计技术规程》SDJ161—85有关规定和审批的电力规划设计决定进行。

凡有两台及以上主变的变电所,其中一台事故停运后,其余主变的容量应保证供应该所全部负荷的70%,在计及过负荷能力后的允许时间内,应保证用户的一级和二级负荷。

若变电所所有其他能源可保证在主变停运后用户的一级负荷,则可装设一台主变压器。

(2)与电力系统连接的35~110kV 变压器,若不受运输条件限制,应选用三相变压器。

(3)根据电力负荷的发展及潮流的变化,结合系统短路电流、系统稳定、系统继电保护、对通信线路的影响、调压和设备制造等条件允许时,应采用自耦变压器。

(4)在35~110kV 具有三种电压的变电所中,若通过主变各侧绕组的功率均达到该变压器额定容量的15%以上,或者第三绕组需要装设无功补偿设备时,均宜采用三绕组变压器。

(5)主变调压方式的选择,应符合《电力系统设计技术规程》SDJ161的有关规定。

3.2台数选择考虑到对负荷供电的可靠性,选择两台主变,正常时分列运行。

3.3 容量选择77397.)7.046446.0(~Srt∙KVA~≈⨯≈5418考虑到电力系统5~10年发展规划和一定的裕量,确定两台主变的容量都为6300KVA,此时变压器的负荷率为:27.7739≈⨯⨯6300/(43).%100%61此时变压器的效率也较高。

3.4 型号选择考虑到干式变压器防火性较油浸式好,适合安装在华北的较干旱的地区,适合选择S9-6300/35。

3.5 变压器工作方式说明主变压器选择两台型号为S9-6300/35的干式变压器,联接组标号为一年多1,电压比为(%5.2335⨯±)、10.5,正常方式为分列运行以限制10KV 线路的短路电流。

10KV 线路上所用变为SC9-100/10 KV 4.0/%55.10±,连接组别为DYN11。

4 电气主接线设计4.1 主接线基本要求根据我国能源部关于《35-110kV 变电所设计技术规程》SDJ 2-88规定:“变电所的电气主接线应根据该变电所在电力系统中地位,变电所的规划容量、负荷性质、线路、变压器连接元件总数、设备特点等条件确定。

并应综合考虑供电可靠、运行灵活、操作检修方便、投资节约和便于过渡或扩建等要求。

”因此对主接线的设计要求可以归纳为下三点:可靠性、灵活性、经济性。

4.2 主接线基本形式电气主接线的基本形式以电源进线和引出线为基本环节。

其基本形式有有母线和无母线两大类。

其中有母线包括单母线接线、分段单母线接线、双母线接线;无母线的接线形式主要有线路变压器组单元接线、桥式接线。

4.3 35KV 侧接线设计本次设计有两路电源进线和两台主变,35KV 侧可采用内桥接线,使得电源线路投入和切除时操作简便。

4.4 10KV侧接线设计变压器二次侧采用分段单母线接线,配合35KV侧的内桥接线,是可靠性大大提高。

4.5 主接线等效电路图综合以上,可以得出此次设计的主接线图如下:5 短路电流计算5.1确定基准值取 Sd=1000MV·A, Ud1=37KV, Ud2=10.5KV Id1=Sd/3Ud1=(1000/3*37)=15.60KAId2=Sd/3Ud2=(1000/3*10.5)=54.99KA 5.2电抗标幺值计算(1) 电力系统 最大运行方式X*A=1.679 X*B=0.3056 (2)电力变压器Uk%=7.5 Pk=34.50KW X*1= X*2=11.90 短路等效电路图:5.3 短路电流和容量计算短路点的确定:(1)总电抗标幺值 : ∑-1*k X =1.679(2)三相对称短路电流初始值 I ´K=Id1/∑-1*k X =9.29KA (3)其他三相短路容量 Ik3=Ib3=I ´3=9.29KA Ip3=2.55*9.29=23.69KAIp3=1.51*9.29=14.03KA (4)三相短路容量S ´K=Sk/∑-1*k X =595.59KV .A根据以上计算过程,分别计算出最大和最小运行方式下的短路电流,如下表:最大运行方式下的短路电流计算表最小运行方式下的短路电流计算表6 电气设备选型与校验6.1高压开关柜此次选用中置式高压开关柜,中置式高压开关柜有明显的优点:(1)手车的装卸在装卸车上进行,手车的推拉在轨道上进行,这样避免了地面质量对手车推进和拉出的影响;(2)手车的推拉是在门封闭的情况下进行的,给操作人员以安全感;(3)断路器中置后,下面留下宽大的空间,使安装电缆更加方便,还可安置电压互感器和避雷器,以充分利用空间10KV侧选择KYN28A-12型中置式高压开关柜,主开关配合性能优良的抽出式真空断路器。

35KV侧选择KYN61-40.5型中置式高压开关柜,主开关配合性能优良的抽出式真空断路器。

6.2高压断路器结合上面的高压开关柜,高压断路器安装在开关内。

查资料,10KV侧选用CV1-12型的户内高压真空断路器,配用弹簧操动机构。

假设后备保护动作时间为0.6S,k-4点处的高压断路器选择校验如下:根据上述的计算方法,可求出此次要选用的高压断路器如下表6.3电流互感器配合前面的开关柜,电流互感器安装开关柜内,做保护测量用。

10KV侧选用LZZBJ12-10A型,35KV侧选用LZZQB8。

假设后备保护动作时间为0.6S,k-4点处的电流互感器选择校验如下:根据上述的计算方法,可求出此次要选用的电流互感器如下表:电流互感器参数表6.4高压熔断器高压熔断器应按正常工作条件选择,并应按环境条件校核,不需要校验动、热稳定性,但要校验开断能力。

(1)额定电压高压限流熔断器的工作电压要与其额定电压相等,不能使用在低于其额定电压的系统中。

(2)额定电流保护电力变压器考虑到变压器的正常过负荷电流,低压侧电动机自启动引起的尖峰电流等因素,并保证在变压器励磁涌流持续时间内不熔断,保护电力变压器的熔体额定电流Ir按变压器一次侧额定电流Ir的 1.5~2倍选择。

保护电压互感器由于电压互感器正常运行时相当于处于空载状态下的变压器,因此,保护电压互感器的熔体额定电流Ir一般为0.5A或者1A,应能承受电压互感器励磁电流的冲击(3)额定最大开断电流额定最大开断电流应大雨安装地点(熔断器出线端子处)的最大三相对称短路电流初始值(4) 35kV侧熔断器的选择35KV侧选XRNP-35/0.5A 31.5KA 额定电压35KV,满足要求,断流容量1000MVA,,大于短路容量595.59MVA,满足要求。

最大开断电流31.5kA,大于短路冲击电流23.69kA,满足校验。

(5) 10kV侧熔断器的选择10KV侧选择RN2—10/0.5型户内熔断器,额定电压10kV,满足要求,断流容量1000MVA,,大于短路容量161.03MVA,满足要求。

最大开断电流50kA,大于短路冲击电流22.59kA,满足校验。

6.5电压互感器电压互感器正常工作条件时,按一次回路电压、二次电压、二次负荷、准确度等级、机械荷载条件选择。

(1) 电压互感器选择原则10kV配电装置一般采用油浸绝缘结构;在高压开关柜中,可采用树脂浇注绝缘结构。

相关主题