当前位置:文档之家› 射频电路调试测试流程

射频电路调试测试流程

射频电路调试测试流程(准备阶段)
射频电路的调试作为通信整机研发工作中的重要一环,工作量非常大,几乎所有电路都需要调试,为了提高效率,需要对调试环境、调试方法等进行规范。

环境准备如下
1、防静电
佩戴“静电手环”,并良好接地,若着化纤、羊毛、羽绒服装,外层需加穿防静电服,或防辐射服;小功率、低电压、高频率、小封装的器件均ESD敏感,最容易被ESD击穿的射频器件:RF开关,其次是LNA;所有仪器,开机使用前必须将机壳良好接地;2、电源
稳压电源接入负载前,先校准输出电压,电压等于负载的额定电压;
3、仪器保护
为安全起见:只要射频功率大于20dBm,射频信号源(30dBm)、频谱分析仪(27dBm)、信号源分析仪(23dBm)输入端必须级联同轴衰减器,一般情况下,5W 5dB衰减器为常态配置,若测试功放模块需根据实际输出功率大小配置合适的衰减器;
4、仪器设置
射频信号源:Keysight输出功率<13dBm,R&S输出功率<18dBm,若超出,输出功率可能小于显示值,需实测并进行补偿;
频谱分析仪:屏幕显示的有效动态范围,FSV约70dB,FSW约80dB;仪器的线性输入功率<-3dBm,超出会恶化待测IM3(ACLR)、谐波,应选择合适的内部/外部衰减值;
矢量网络分析仪:仪器的IF带宽决定噪声,测无源器件的带外抑制,应适当降低IF带宽;调测任何电路,必须保证输出功率<P1dB-3dB,一般设扫描功率=-20dBm;特别注意矢量网络分析仪的扫描功率,同一电路,同一设置;矢量网络分析仪使用正确的校准参数;
5、工具准备
恒温烙铁、热风枪;
线缆检查
柔性同轴电缆最容易损坏的部位:与连接器相连处,使用前先检查;
半柔同轴电缆最容易损坏的部位:外导体有裂痕,使用前先检查;
电路连接方式
馈电
6、电流、电压测定
从限流电阻采样,计算V/R得到电流值;
电压测试点靠近电源输入端、输出端;
直流馈电导线需根据实际工作电流进行合理选择。

对于一般数字芯片的供电,电流不大,使用0.5mm的细航空线即可,对于功放等大功率模块来说,工作电流最大可能达到几A甚至十几A,需要选择耐流值合适的导线。

7、测试点选取
射频(<3GHz)
将射频电路输入级隔直电容之前某器件断开,开口电缆接入激励仪器;
将射频电路输出级隔直电容之后某器件断开,开口电缆接到测量仪器;
射频电缆开口长度:<最短波长的1/100;
射频(>3GHz)若条件允许:
1、将整块PCB图以模块(LNA、Mixer、PA)为单位分割成若干小PCB图,输入/输出以
微带SMA形式引出,PCB介质、厚度与大PCB一致;
2、先分别调试小PCB匹配,再用同样匹配方法调试整块PCB;
若条件不允许:
使用耦合探头,在线调测;>5GHz完全用分布参数;
射频电路调试测试流程(实测阶段)
1、滤波器部分
二端口矢量网络仪,测S11/S22(互易)、S21,扫描功率不限;
用微扰法(借助磁棒、铜/铝片),调电感、电容,改变零极点;
若微扰变优,则器件值需要调整;
循环多次,完成调试;
2、LNA部分
先测电源工作电压和工作电流,符合标称值,方可进入下一步;
二端口矢量网络仪,测S11、S22、S21/S12,扫描功率=-20dBm;
调试过程中若发现S11/S22>0,说明自激,先消除自激后,再往下进行;
用微扰法(借助磁棒,铜/铝片),调电感、电容,观察S11、S22曲线;
若微扰变优,则器件值需要调整;
S11→S22→S21/S12,循环多次,若符合标称值,调试完成;
3、Mixer部分
两台仪器:射频信号源,二端口矢量网络仪,频谱分析仪;
射频信号源输出功率=LO标称功率,矢量网络仪扫描功率=-20dBm;
先测电源工作电压,工作电流,符合标称值,方可进入下一步;
RF/IF先端接50Ω。

用微扰法,匹配LO端,观察S11曲线;
用微扰法,匹配RF端,观察S11曲线;
用微扰法,匹配IF端,观察S11曲线;
循环多次,然后测出变频损耗。

若符合标称值,调试完成;
4、DDS部分
先测电源工作电压和工作电流,符合标称值,方可进入下一步;
输入时钟非常重要,幅度、谐波、杂散、相位噪声直接影响输出相位噪声指标;
调时钟输入端匹配,影响时钟幅度;
调DDS输出端匹配,影响DDS输出谐波杂散;
5、PLL+VCO部分
先测电源工作电压和工作电流,符合标称值,方可进入下一步;
VCO输出幅度是否符合标称值,电源是否干净影响VCO输出杂散;
REF CLK非常重要,幅度、谐波、杂散、相位噪声直接影响输出相位噪声指标;
调RF输入端匹配,可能影响pulling frequency及换频时间;
为降低pulling frequency ,VCO输出端与LO之间要有足够隔离;
低通环路相位余量在换频时间与相位噪声之间平衡;
6、检波部分
先测电源工作电压和工作电流,符合标称值,方可进入下一步;
调输入端匹配,观察S11曲线,扫描功率=-20dBm;
射频信号源施加激励,检波电压值=检波曲线标称值±3dB*检波斜率;
信号源AM调制,调制频率=符号率,调制度80%,用示波器观察RC低通滤波后波形,(峰值-估值)/检波斜率<3dB,检波输出时延<1符号周期;
7、AMP部分
测量管子各级对地电阻,确保管芯没有损坏
测试静态工作点观察电压和电流的值,符合标称值,方可进入下一步;
小信号测量,将功放输入端接矢网port 1,输出端接衰减器后再接入port 2(设置衰减器补偿),给功放加电,观察S11和S21是否满足设计需求
大信号测量,当AMP饱和输出功率>35dBm,若自激,输入端功率可能会大于25dBm。

用频谱分析仪(级联衰减器)观察AMP是否自激,必须稳定,方可进入下一步;
将信号源初始输入功率设为很小的值(-20dBm左右),逐渐增大,观察输出功率增大情况以及电流增大情况,直至饱和点(一般为1dB压缩点)。

观察频谱仪,记录各次频谱及漏极电流,收集数据,计算饱和输出功率、增益、谐波和效率等指标。

线性度测试。

测量ACPR及EVM,用功率计测输出端VSWR;
8、天线部分
最基本的指标就是S11;
近场范围内净空,接地板大小符合设备安装实情,地板与大地之间耦合电容100pF;
调测S11;
双天线收发闭环,测EVM;
9、控制部分
示波器的模拟带宽>脉宽倒数(时钟频率)的5倍(否则显示的脉冲变形,上升/下降沿变缓);
测逻辑是否争正确,电平是否符合标准,上升、下降时间是有符合要求
改变端接电阻值,使过冲幅度符合要求;
检查是否存在串扰;。

相关主题