当前位置:文档之家› 高考物理带电粒子在复合场中的运动试题经典及解析

高考物理带电粒子在复合场中的运动试题经典及解析

一、带电粒子在复合场中的运动专项训练1.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v0=vcosφvsinφ=atd=v0t设电场强度的大小为E,由牛顿第二定律得qE=ma解得:2.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m、电荷量为q的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I.不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U;(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;(3)实际上加速电压的大小会在U+ΔU范围内微小变化.若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)【来源】2012年普通高等学校招生全国统一考试理综物理(天津卷)【答案】(1)(2)(3)0.63%【解析】解:(1)设离子经电场加速后进入磁场时的速度为v,由动能定理得:qU =mv2离子在磁场中做匀速圆周运动,由牛顿第二定律得:qvB=解得:U =(2)设在t 时间内收集到的离子个数为N ,总电荷量Q = It Q = Nq M =" Nm" =(3)由以上分析可得:R =设m /为铀238离子质量,由于电压在U±ΔU 之间有微小变化,铀235离子在磁场中最大半径为:R max =铀238离子在磁场中最小半径为:R min =这两种离子在磁场中运动的轨迹不发生交叠的条件为:R max <R min 即:< 得:<<其中铀235离子的质量m = 235u (u 为原子质量单位),铀238离子的质量m ,= 238u 则:<解得:<0.63%3.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02mT qBπ=.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题【答案】(1)00x y = ,()202qBy m(2)见解析【解析】 【详解】(1)发射源的位置00x y =, 粒子的初动能:()2002k qBy Em=;(2)分下面三种情况讨论: (i )如图1,002k E qU >由02101mv mv mvy R R Bq Bq Bq===、、, 和221001122mv mv qU =-,222101122mv mv qU =-, 及()012x y R R =++, 得()()22002224x y yqB mqU yqB mqU qBqB=++(ii )如图2,0002k qU E qU <<由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =+, 及()032x y d R =--+,得()222023)2x y d y d q B mqU qB=-++++(;(iii )如图3,00k E qU <由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =-, 及()04x y d R =--+, 得()222042x y d y d q B mqU qB=--+-4.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。

(1)求0≤x≤L 区域内电场强度E 的大小和电子从M 点进入圆形区域时的速度v M ;(2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴,求所加磁场磁感应强度B 的大小和电子在圆形区域内运动的时间t ; (3)若在电子从M 点进入磁场区域时,取t =0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N 点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T 满足的关系表达式。

【来源】【省级联考】吉林省名校2019届高三下学期第一次联合模拟考试物理试题 【答案】(1)2U E L =,M eUv m=v M 的方向与x 轴的夹角为θ,θ=45°;(2)2M mv mv B eR L e ==,3348M R L m t v eUππ==3)T 的表达式为22T n emU =(n =1,2,3,…) 【解析】 【详解】(1)在加速电场中,从P 点到Q 点由动能定理得:2012eU mv = 可得02eUv m=电子从Q 点到M 点,做类平抛运动, x 轴方向做匀速直线运动,02L m t L v eU==y 轴方向做匀加速直线运动,2122L eE t m=⨯ 由以上各式可得:2U E L=电子运动至M 点时:220()M Ee v v t m=+即:M eUv m=设v M 的方向与x 轴的夹角为θ,02cos 2M v v θ== 解得:θ=45°。

(2)如图甲所示,电子从M 点到A 点,做匀速圆周运动,因O 2M =O 2A ,O 1M =O 1A ,且O 2A ∥MO 1,所以四边形MO 1AO 2为菱形,即R =L由洛伦兹力提供向心力可得:2MM v ev B m R=即2M mv mvB eR L e== 3348M RL m t v eUππ==。

(3)电子在磁场中运动最简单的情景如图乙所示,在磁场变化的半个周期内,粒子的偏转角为90°,根据几何知识,在磁场变化的半个周期内,电子在x 轴方向上的位移恰好等于轨道半径2R ',即222R L '=因电子在磁场中的运动具有周期性,如图丙所示,电子到达N 点且速度符合要求的空间条件为:22)2n R L '=(n =1,2,3,…) 电子在磁场中做圆周运动的轨道半径0Mmv R eB '=解得:022n emUB =n =1,2,3,…) 电子在磁场变化的半个周期内恰好转过14圆周,同时在MN 间的运动时间是磁场变化周期的整数倍时,可使粒子到达N 点且速度满足题设要求,应满足的时间条件是0142T T =又002mT eB π=则T 的表达式为22mLT n emUπ=(n =1,2,3,…)。

5.如图所示,MN 为绝缘板,CD 为板上两个小孔,AO 为CD 的中垂线,在MN 的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m 电荷量为q 的粒子(不计重力)以某一速度从A 点平行于MN 的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O 点),已知图中虚线圆弧的半径为R ,其所在处场强大小为E ,若离子恰好沿图中虚线做圆周运动后从小孔C 垂直于MN 进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN 板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D 进入MN 上方的一个三角形匀强磁场,从A 点射出磁场,则三角形磁场区域最小面积为多少?MN 上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A 点出发后,第一次回到A 点所经过的总时间为多少?【来源】2014届福建省厦门双十中学高三热身考试物理试卷(带解析) 【答案】(1EqRm(2)212R ;11n +;(3)2πmR Eq【解析】 【分析】 【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mv Eq R= 解得:EqRv m=(2)粒子从D 到A 匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22R S = 在磁场中洛伦兹力提供向心力,则有:2mv Bqv R= 得:mv R Bq=设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:若只碰撞一次,则有:112R mv R B q== 22mvR R B q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒子在电场中运动时间:1242R mRt v Eqππ== 在MN 下方的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=⨯⨯== 在MN 上方的磁场中运动时间:232142R mRt v Eq ππ=⨯=总时间:1232mRt t t t Eqπ=++=6.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U 0的大小;(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.【来源】【市级联考】山东省济南市2019届高三第三次模拟考试理综物理试题【答案】(1)40 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥【解析】【分析】【详解】(1)对于t =0时刻射入极板间的粒子:0l v T = 7110T s -=⨯211()22T y a = 2y T v a = 22yT y v = 122d y y =+ Eq ma =0U E d= 解得:40 2.1610V U =⨯ (2)2T t nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆=(3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y .速度偏转角的正切值均为:0tan yv v β= 37β= 0cos37v v= 6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R= 0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A R x x ︒=+ 0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动.综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥7.如图为近代物理实验室中研究带电粒子的一种装置.带正电的粒子从容器A 下方小孔S 不断飘入电势差为U 的加速电场.进过S 正下方小孔O 后,沿SO 方向垂直进入磁感应强度为B 的匀强磁场中,最后打在照相底片D 上并被吸收,D 与O 在同一水平面上,粒子在D 上的落点距O 为x ,已知粒子经过小孔S 时的速度可视为零,不考虑粒子重力.(1)求粒子的比荷q/m ;(2)由于粒子间存在相互作用,从O 进入磁场的粒子在纸面内将发生不同程度的微小偏转.其方向与竖直方向的最大夹角为α,若假设粒子速度大小相同,求粒子在D 上的落点与O 的距离范围;(3)加速电压在(U±△U )范围内的微小变化会导致进入磁场的粒子速度大小也有所不同.现从容器A 中飘入的粒子电荷最相同但质量分别为m 1、m 2(m 1>m 2),在纸面内经电场和磁场后都打在照相底片上.若要使两种离子的落点区域不重叠,则U U应满足什么条件?(粒子进入磁场时的速度方向与竖直方向的最大夹角仍为α)【来源】浙江诸暨市牌头中学2017-2018学年高二1月月考物理试题【答案】(1)228U B x (2)最大值x 最小值cos x α (3)212212cos cos m m U m m αα-∆<+ 212(cos )m m α>【解析】【详解】(1)沿SO 方向垂直进入磁场的粒子,最后打在照相底片D 的粒子;粒子经过加速电场:qU=12mv 2 洛伦兹力提供向心力:qvB=m 2v R落点到O 的距离等于圆运动直径:x=2R所以粒子的比荷为:228 qU m B x = (2)粒子在磁场中圆运动半径22qmU x R == 由图象可知:粒子左偏θ角(轨迹圆心为O 1)或右偏θ角(轨迹圆心为O 2) 落点到O 的距离相等,均为L=2Rcosθ故落点到O 的距离最大:L max =2R=x最小:L min =2Rcosα=xcosα(3)①考虑同种粒子的落点到O 的距离;当加速电压为U+△U 、偏角θ=0时,距离最大,L max =2R max =2 2()qm U U Bq+∆ 当加速电压为U-△U 、偏角θ=α时,距离最小 L min =2R min cosα=22()qm U U Bq -∆cosα②考虑质量不同但电荷量相同的两种粒子由R=2 qmU qB 和 m 1>m 2,知:R 1>R 2 要使落点区域不重叠,则应满足:L 1min >L 2max12 2()qm U U Bq-∆ cosα>22 2()qm U U Bq+∆解得:212212cos cos m m U m m αα-∆<+. (应有条件m 1cos 2α>m 2,否则粒子落点区域必然重叠)8.如图1所示,直径分别为D 和2D 的同心圆处于同一竖直面內,O 为圆心,GH 为大圆的水平直径两圆之间的环形区域(I 区)和小圆内部(II 区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m ,电最为+q 的粒子由小孔下2d 处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场,不计粒子的重力.(1)求极板间电场强度的大小E ;(2)若I 区、II 区磁感应强度的大小分别为2mv qD 、4mv qD,粒子运动一段时间t 后再次经过H 点,试求出这段时间t ;:(3)如图23D ,调节磁感应强度为B 0(大小未知),并将小圆中的磁场改为匀强电场,其方向与水平方向夹角成60︒角,粒子仍由H 点紧靠大圆内侧射入磁场,为使粒子恰好从内圆的最高点A 处进入偏转电场,且粒子在电场中运动的时间最长,求I 区磁感应强度B 0的大小和II 区电场的场强E 0的大小?【来源】【全国百强校】天津市新华中学2019届高三高考模拟物理试题【答案】(1)2mv qd (2)5.5D v π(33mv ;2839mv qD【解析】【详解】解:(1)粒子在电场中运动,由动能定理可得:2122d qE mv = 解得:2mv E qd= (2)粒子在I 区中,由牛顿第二定律可得:211v qvB m R = 其中12v B qD π=,12R v = 粒子在II 区中,由牛顿第二定律可得:222v qvB m R = 其中24mv B qD =,24D R = 121222,R R T T v vππ==, 由几何关系可得:1120θ=︒2180θ=︒1112360t T θ=︒ 222360t T θ︒=()126t t t =+解得: 5.5D t vπ=(3)由几何关系可知:2223())22D D r r =+-解得:33r D = 由牛顿第二定律可得:20v qvB m r= 解得:03mv B qB= 32cos 2Dr θ== 解得:30θ=︒,则粒子速度方向与电场垂直(1sin )2D vt θ+= 21cos 22D at θ= 0E q ma =解得:20839mv E qD=9.在平面直角坐标系xOy 中,第Ⅱ、Ⅲ象限y 轴到直线PQ 范围内存在沿x 轴正方向的匀强电场,电场强度大小500N/C E =,第I 、Ⅳ象限以()0.4,0为圆心,半径为的圆形范围内,存在垂直于坐标平面向外的匀强磁场,磁感应强度0.5T B =.大量质量为10110kg m -=⨯,电荷量6110C q -=⨯的带正电的粒子从PQ 上任意位置由静止进入电场.已知直线PQ 到y 轴的距离也等于R .不计粒子重力,求:(1)粒子进入磁场时的速度大小;(2)若某个粒子出磁场时速度偏转了120,则该粒子进入电场时到y 轴的距离h 多大? (3)粒子在磁场中运动的最长时间.【来源】天津市耀华中学2019届高三高考二模物理试题【答案】(1)2000m/s (2)0.2m (3)4210s π-⨯【解析】【详解】(1)粒子在电场中加速,则有:212EqR mv =解得:2000m/s v = (2)在磁场中,有:2v qvB m r = 解得: 0.4m r R ==即正好等于磁场半径,如图,轨迹圆半径与磁场圆半径正好组成一个菱形由此可得sin300.2h R m =︒=(3)无论粒子从何处进入磁场,(2)中菱形特点均成立,所有粒子均从同一位置射出磁场,故4max 210s 2T m t Bqππ-===⨯10.如图所示,直线y =x 与y 轴之间有垂直于xOy 平面向外的匀强磁场1B ,直线x =d 与y =x 间有沿y 轴负方向的匀强电场,电场强度41.010V/m E =⨯,另有一半径R =1.0m 的圆形匀强磁场区域,磁感应强度20.20T B =,方向垂直坐标平面向外,该圆与直线x =d 和x 轴均相切,且与x 轴相切于S 点.一带负电的粒子从S 点沿y 轴的正方形以速度0v 进入圆形磁场区域,经过一段时间进入磁场区域1B ,且第一次进入磁场1B 时的速度方向与直线y =x 垂直.粒子速度大小50 1.010m/s v =⨯,粒子的比荷为5/ 5.010C/kg q m =⨯,粒子重力不计.求:(1)粒子在匀强磁场2B 中运动的半径r ;(2)坐标d 的值;(3)要使粒子无法运动到x 轴的负半轴,则磁感应强度1B 应满足的条件;(4)在(2)问的基础上,粒子从开始进入圆形磁场至第二次到达直线y =x 上的最长时间( 3.14π=,结果保留两位有效数字).【来源】天津市滨海新区2019届高三毕业班质量监测理科综合能力测试物理试题【答案】(1)r =1m (2)4m d = (3)10.1B T ≤或10.24B T ≥ (4)56.210t s -≈⨯【解析】【详解】解:(1) 由带电粒子在匀强磁场中运动可得:2020v B qv m r= 解得粒子运动的半径:1r m =(2) 粒子进入匀强电场以后,做类平抛运动,设粒子运动的水平位移为x ,竖直位移为y 水平方向:0x v t = 竖直方向:212y at = Eq a m= 0tan 45v at ︒=联立解得:2x m =,1y m =由图示几何关系得:d x y R =++解得:4d m =(3)若所加磁场的磁感应强度为1B ',粒子恰好垂直打在y 轴上,粒子在磁场运动半径为1r 由如图所示几何关系得:()12r y R =+02v v =由带电粒子在匀强磁场中运动可得:211v B qv m r '= 解得:10.1B T '=若所加磁场的磁感应强度为1B '',粒子运动轨迹与轴相切,粒子在磁场中运动半径为2r 由如图所示几何关系得:()2222r r y R +=+由带电粒子在匀强磁场中运动可得:212v B qv m r ''= 解得1210.2410B T T +''=≈ 综上,磁感应强度应满足的条件为10.1B T ≤或10.24B T ≥(4)设粒子在磁场2B 中运动的时间为1t ,在电场中运动的时间为2t ,在磁场1B 中运动的时间为3t ,则有:1114t T = 102R T v π=20x t v = 3212t T = 222r T vπ= 解得:()551232 1.52210 6.210t t t t s s ππ--=++=-+⨯≈⨯11.如图所示,空间存在方向垂直于xOy 平面向里的匀强磁场,在0<y<d 的区域Ⅰ内的磁感应强度大小为B ,在y>d 的区域Ⅱ内的磁感应强度大小为2B .一个质量为m 、电荷量为-q 的粒子以速度qBd m从O 点沿y 轴正方向射入区域Ⅰ.不计粒子重力.(1) 求粒子在区域Ⅰ中运动的轨道半径:(2) 若粒子射入区域Ⅰ时的速度为2qBd v m=,求粒子打在x 轴上的位置坐标,并求出此过程中带电粒子运动的时间; (3) 若此粒子射入区域Ⅰ的速度qBd v m>,求该粒子打在x 轴上位置坐标的最小值. 【来源】江苏省苏锡常镇四市2019届高三第二次模拟考试物理试题 【答案】(1)R d =(2) (43OP d = 23m t qBπ=(3)min 3x d = 【解析】【分析】【详解】(1)带电粒子在磁场中运动,洛仑磁力提供向心力:2001v qv B m r = 把0qBd v m=,代入上式,解得:R d = (2) 当粒子射入区域Ⅰ时的速度为02v v =时,如图所示在OA 段圆周运动的圆心在O 1,半径为12R d = 在AB 段圆周运动的圆心在O 2,半径为R d = 在BP 段圆周运动的圆心在O 3,半径为12R d =可以证明ABPO 3为矩形,则图中30θ=,由几何知识可得:132cos303OO d d ==所以:323OO d d =-所以粒子打在x 轴上的位置坐标()133243OP O O OO d =+=- 粒子在OA 段运动的时间为:13023606m mt qB qBππ==粒子在AB 段运动的时间为2120236023m mt q B qBππ==粒子在BP 段运动的时间为313023606m mt t qB qBππ===在此过程中粒子的运动时间:12223mt t t qBπ=+=(3)设粒子在区域Ⅰ中轨道半径为R ,轨迹由图可得粒子打在x 轴上位置坐标:(22222x R R d R d =--化简得:222340R Rx x d -++=把上式配方:222213033R x x d ⎛⎫--+= ⎪⎝⎭ 化简为:222213033R x x d ⎛⎫-=-≥ ⎪⎝⎭则当23R x =时,位置坐标x 取最小值:min 3x d =12.如图所示,在xoy 平面的第二象限内有沿y 轴负方向的匀强电场,电场强度的大小E=102V/m ,第一象限某区域内存在着一个边界为等边三角形的匀强磁场,磁场方向垂直xoy 平面向外。

相关主题